
March 2017. to appear in Springer LNCS: Advances in Computers and Games 2017, Jaap van den Herik, Walter Klosters, Mark Winands, eds.

Exploring Positional Linear Go

Noah WENINGER a and Ryan HAYWARD b,1

a Department of Computing Science, University of Alberta, Canada
b Department of Computing Science, University of Alberta, Canada

Abstract. Linear Go is the game of Go played on the 1×n board. Positional Linear

Go is Linear Go with a rule set that uses positional superko. We explore game-

theoretic properties of Positional Linear Go, and incorporate them into a solver

based on MTD(f) search, solving states on boards up to 1×9.

Keywords. solving Go, linear Go, rectangular Go, game tree search

1. Introduction

Now that computers have surpassed humans in playing the game of Go [3,7] — also

known as Baduk or Weiqi — perhaps it is time to revisit the problem of solving the

game of Go. Solving — i.e. finding exact minimax values — even 9×9 Go is currently

intractable, but progress has been made for smaller boards. In 2002 the program Migos

by Erik van der Werf et al. solved all opening 5×5 Go positions [11,13,15]. Later, Migos

solved positions for various rectangular boards with at most 30 cells [12,14].

Linear Go is Go on the 1×n board. Positional Linear Go (PLGo, or n-PLGo when

we specify the board size) is Linear Go with a rule set that uses positional superko, e.g.

Tromp-Taylor rules [10] with no suicide and no komi.2 So a non-pass move cannot recre-

ate any position that occurred earlier, and the game ends after two consecutive passes. A

state is defined by the player to move, current position, the set of earlier positions, and

whether the previous move was pass.

As far as we are aware, PLGo has not been solved before. Van der Werf solved Go

with a rule set in which — except for immediate ko, which is forbidden — under certain

conditions the return to an earlier position results in no result, or draw. In this version of

Go, consider a state S with graph G of all continuations from S. In G, consider a move

sequence (m1, . . . ,mt−1,mt) leading from a state with position X to a subsequent state

with same position. When traversing G to find a strategy that bounds the minimax score

for player P, one must prune move mt — which yields a draw — but also move mt−1

whenever this move is made by P, for otherwise P’s opponent can then draw. By contrast,

in PLGo only move mt is pruned. So the search space for the above version of Go is

smaller than for PLGo.

All empty-board PLGo scores found so far — up to n = 9 — agree with those of the

version of Linear Go solved by Migos. See Figure 1.

1Corresponding Author: R Hayward, University of Alberta, Edmonton, Canada; E-mail:

hayward@ualberta.ca.
2We wanted a rule set that is concise, precise, and — like Asian Go — has no suicide.

March 2017

2. Observations on solving Positional Linear Go

In this paper, we describe board positions like this (-x-o--), where x and o are respec-

tively black and white stones. We describe move sequences like this (1.b2 2.w4 . . .) or

this (b2 w4 . . .) or this (2 4 . . .). Also, when no captures have occurred, we describe

move sequences like this (-1-2--) or as in Figure 2.

To illustrate PLGo, consider the left state of Figure 2. Black moved first at cell 2;

White replied at cell 4. Now Black has 5 possible moves: pass — always legal — or at

any of the 4 empty cells. Assume Black plays at 5. Now White has 2 possible moves:

pass or at 6, since playing at 1 or 3 would be suicide. Assume White plays at 6, capturing

the Black stone at 5. Now Black has 3 possible moves: pass, 1 or 3 — playing at 5 would

capture the stone at 6 and recreate an earlier position, violating positional superko.

We leave it as an exercise for the reader to solve the states in Figure 2.

In principle, solving Go — or any other 2-player complete information game — is

straightforward: perform minimax search on the game tree. If the game allows transposi-

tions, i.e. different play sequences that yield the same state, it can be faster to search on

the game graph rather than the game tree.

In practice, solving Go in this way becomes intractable even for small boards, due to

the size of the search tree. Figure 3 shows the 2-PLGo Go tree. For n-PLGo, the game tree

is only slightly larger than the game graph, which — discounting positions unreachable

from the root position — is significantly larger than the number of legal positions —

about .85× .971+n×2.98n [8] — since the same position can have different histories and

so appear in several nodes. See Figures 3 and 4.

To prove a minimax value, one needs both a lower bound and an upper bound. Trees

that establish such bounds are called proof trees. Figure 4 shows a proof tree for the

lower bound of the 5-PLGo first-player empty board minimax value.

For n = t×t, proof trees for n-PLGo tend to be larger than proof trees for t×t

Go: boards with at least two rows and two columns often have unconditionally safe

groups, and detecting such groups reduces the search space [4]. But in PLGo, deter-

mining whether a group is safe usually requires knowing the history in as well as the

position.

Solving a PLGo state is similar in flavour to the NP-hard problem of finding a longest

path in the associated transition graph, so pruning is likely to significantly reduce solving

time. In this section we consider PLGo properties that allow pruning.

The following gives a lower bound on the empty-board score.

Theorem 1. For m×n Go with positional superko, the first-player empty-board minimax

score is non-negative.

Proof. Argue by contradiction: assume the first-player minimax score t is negative.

First find the minimax value when the first move is pass. Case 1: the opponent

passes, the game ends, score 0. Case 2: the opponent does not pass. Now use strategy

Version of Linear Go solved by Migos: minimax score

n 1 2 3 4 5 6 7 8 9 10 11 12

score 0 0 3 4 0 1 2 3 0 1 2 2

Figure 1. Empty board 1st-player minimax score as solved by Migos [14].

March 2017

1 2 3 4 5 6

1 2

1 2 3 4 5 6

1 3 2

Figure 2. For each state, find the principal variation and minimax score. Solutions in Figures 14 and 6.

n legal n-PLGo positions

1 1

2 5

3 15

4 41

5 113

6 313

7 867

8 2401

9 6649

10 18413

11 50991

12 141209

13 391049

-- 0

-- 0 x- -2 -x -2

-- 0 o- 2 -o 2 x- 2 -o -2 -x 2 o- -2

o- -2 -x 2 -o -2 x- 2 x- 2 -o -2 -x 2 o- -2

o- -2 -x 2 x- 2 -o -2 o- -2

-x 2 x- 2

Figure 3. Left: the number of legal 1×n Go positions [8]. A position can occur in multiple states, so the

number of legal 1×n Go states is more than the number of legal 1×n Go positions. Right: the 2-PLGo state

transition graph for all states reachable from the empty board. Each node score is 1st-player minimax.

stealing: after exchanging the names of the players, the game transition graph is identi-

cal to the original game transition graph. The opponent’s minimax score is t < 0, so the

opponent prefers case 1, pass, minimax score 0.

So, from the original position, the first player has a move (pass) with minimax score

0, which is greater than the minimax score t, contradiction.

The history of a PLGo state is the set P = {P0, . . . ,Pt} of board positions Pj, where

P0 and Pt are respectively the original and current position. Define a position as a se-

quence of values — black, white, empty — indexed by the cells. The position of a state

is its current position. Define a PLGo state S = (P,x, p) by its history P , the player to

move x, and a boolean p that is true whenever the previous move was pass. Label cells

of the board from 1 to n so that consecutively labelled cells are neighbours, e.g. as in

Figure 2. For a state S = (P,z, p) with position P, for player x (either z or the opponent

of z), define µx(P) as the score of P and µx(S) as the minimax value of S.

Conjecture 1. For n-PLGo with n ≤ 7, let S = (P,x, p) be a state such that neither

player has played at cell 1 nor 2. For each j in {1,2}, let S j be the state resulting from x

playing at cell j. Then µx(S1)≤ µx(S2).

We have verified Conjecture 1 for all empty board positions with n at most 7.

For a state S and a continuation of legal moves T , S+ T is the state obtained by

playing T from S. In such a sequence, φ denotes pass.

Theorem 2. For n-PLGo with n ≥ 2, let S be a state in which neither player has played

at cells 1 nor 2. Then for each player x with opponent y, µx(S
′ = S+ x1 y2) ≤ µx(S

′′ =
+xφ y2).

March 2017

Proof. S′ and S′′ have the same position and histories, except that S′ contains the position

P of S′+ x1 whereas S′′ does not. Consider an optimal x-strategy Π for S′. Notice that x

can also use Π for S′′, since any move that is legal for x in a continuation of S′ is legal

in the corresponding continuation of S′′. The move options for y will be the same in both

continuations: every non-pass move by y leaves at least one y-stone on the board, so y

can never make a move that would create S+ x1.

We can use Theorem 2 to prune some cases that would be covered by Conjecture 1.

At state S, consider the three moves in this relative order: 2 before pass before 1. Upon

arriving at the move to 1, compare the current lower bound α on µx(S) with the current

upper bound β on µx(S+ xφ y2): if α > β then move 1 can be pruned.

Define E as the state with empty board and empty history. Let b be Black, the first

player. For each cell j, define E j as E +b j, i.e. the state obtained after b plays at cell j,

so in each case with player-to-move White.

Theorem 3 and Corollary 1 are depicted in Figure 5.

-x---

-xo-- -x-o- -x--o

-x-x- -x-x-

-xoo- -x-oo

-x--x -xx--

-xo-x -xxo- -xx-o

-x-xx -xx-x -xxx-

-xo--

-x-x-

Figure 4. Proof tree for lower bound for 5-PLGo: 1st player scores at least 0. Each empty node is pass.

----- a

----- -a x---- b -x--- c --x-- d

-o--- ≤-c -x-o- --xo-

Figure 5. Two PLGo empty-board minimax (in)equalities. Node labels are minimax value. Empty-board value

is a, so value of (1.pass) is −a. Value of (1.b2) is c, so value of (1.b1 2.w2) is at most −c.

March 2017

Theorem 3. µb(E +φ) =−µb(E).

Proof. The opponent can steal b’s strategy.

Corollary 1. For n-PLGo with n ≥ 2, µb(E1)≤−µb(E2).

Proof. From E1, White can play at cell 2 and steal Black’s strategy from E2.

PLGo has some positions whose associated states are always safe under alternating

play. Call a state stable if its minimax value equals its position score. E.g. consider the

left state in Figure 2: the union of territory and stones is {1,2} for Black and {4,5,6} for

White, so the current Black score is −1. But the Black minimax value is +6, so this state

is not stable. Here is another example: any state with position (-x-x-) is stable: o’s only

move is pass, and the position score of +5 for x is maximum possible.

-x-----

-x-o---

-x-o-x-

-xxo-x-

o--o-x-

o--oxx-

o--o--o

o--ox-o

o--o-oo

-x-o-oo

-xoo-oo

-x--x--

-x--xo-

-x-xxo-

-xo--o-

-x-x-o-

-x----

-x--o-

-xx-o-

-xx-oo-xxoo-

-xxxo- xxx-o--xx--x

o---o--xxo-x

-xx-xx

-xxo--

-xx-x-

-x--o-o-x-o- o--xo-

-x-oo-

o-xxo-

oo-xo-

oo--o-

oo-x-x

--x-o- oo-xo- --xx-x oo-xxx

-ox-o- ooo-o- -oxx-x

x-x-o- ---xo- x-xx-x --xxxx

x-xoo- --o-o- x-xxo- -o----

x-x--x -xo-o- -o--x-

-ox--x o-o-o- -o--o- -oo-x-

-o-o-x

Figure 6. Left: main lines showing state (-13-2-) is stable: neither player benefits by moving. Right: after

showing (-x-x-o-) states are stable, principal variation of proof that (-1-3-2-) is stable.

For n-PLGo with n ≥ 3, for a player z and a state S, call S z-total if every cell in

S is either empty or z-occupied, and z has never played at any of the empty cells, and

one of these three conditions holds: 1 and n are empty, 2 and n− 1 are occupied, and

every gap between consecutive z-blocks has size at most 2; or 1, n, n−1 are empty, 2 and

n− 2 are occupied, and every gap between consecutive z-blocks has size exactly 1; or

the symmetric case to the previous obtained by relabelling 1,. . . ,n as n,. . . ,1 respectively.

E.g., -x--xxx-x-xx- and -xx-xxx-x-x-- are x-total, whereas neither -x--xx-- nor

-x--xx is x-total. Call a state total if, for one of the players z, it is z-total.

March 2017

-x-----

-xo---- -x-o--- -x--o-- -x---o- -x----o

-x-x--- -x-o-x- -x--ox- -x-x-o- -x-x--o

-x-x-o- -x--o-o -x-x-x-

-x-xo-o

-xo-ox-

o-o-ox-

o-ox-x-

-x-x-x-

Figure 7. Main lines of proof graph for 7-PLGo after using Theorem 5. 1st player minimax value is +2. Empty

node is pass. Moves in a proof graph need not be strongest: eg. strongest reply to (-xo----) is (-xo--x-),

not (-x-x---) as shown.

Theorem 4. For n-PLGo, every z-total state is stable, with z minimax value +n.

Proof. The opponent cannot play into any gap of size 1: that would be suicide. For the

first case, if the opponent plays into a gap of size 2, z can reply in the same gap and

capture the opponent, leaving a gap of size 1. For the last two cases, if the opponent

plays at the end gap of size two, z can reply in the same gap and capture. After that, the

opponent has no legal moves, either by ko or suicide.

Consider 1×n Go. An end cell is cell 1 or cell n. For a position and a fixed player, i)

a chain is a maximal set of connected stones; ii) two chains are adjacent if separated by

exactly one cell, which is empty; iii) a group is a maximal set of chains, none containing

an end, each adjacent to at least one other in the set. E.g. in (xx-xx-x-x-o--xx-) x has

2 groups (cells 4 to 9, and 13,14) and o has 1 group (at 11).

For n-PLGo with n ≥ 3, a state is loosely packed if neither player has ever played

at any cell that is now empty and its own territory (although the opponent might have

played there and been captured), cells 1 and n are empty, cells 2 and n− 1 are occu-

pied, and the gap between two consecutive chains is exactly 1. E.g. states with position

-x-o-xxx-oo- are loosely packed, states with position -x-o-x are not, and states with

position -x-x-o- are loosely packed as long as x has never played at cell 3.

Theorem 5. For n-PLGo with n ≤ 7, every loosely packed state is stable.

Proof. (sketch) By case analysis of each position, which we have verified by computer.

For positions such as -x-x-o- in which each chain has size 1, the proofs are relatively

straightforward. When one chain is larger the proofs can be longer, especially when n is

even. See Figures 6 and 7.

Theorem 5 cannot be extended. The 8-PLGo state with move sequence (2 7 3 5) to

position (-xx-o-o-) is loosely packed but not stable: from this position the main line

March 2017

is (4 6 8 6 pass 7) leaving (-xxx-oo-) with µx =+1. Also, the 8-PLGo state (2 4 7 6)

to position (-x-o-xx-) is loosely packed but not stable: o cannot attack but x can, with

main line (5 8 5 p 3 p 7) leaving (-xx-x-x-) with µx =+8.

For a n-PLGo position P with n ≥ 3, a telomere is a subsequence of P that includes

exactly one of the board ends, i.e. for some t ≥ 2, induced by cell set either {t, t+1, . . .n}
or {1,2,. . . , n+ 1− t}. The complement of a telomere T with cell set S is the telomere

whose cell set is the complement of T with respect to {1,2,. . . ,n}. E.g. for n = 4, the

complement of the telomere induced by {2,3,4} is the telomere induced by {1}. The end

of a telomere is the end of the sequence corresponding to the end position — either 1 or

n — of the board; the front of a telomere is the other end. When writing telomeres, we

put a parenthesis at the end and a square bracket at the front. E.g. for position (-x-oox),

(-x] and [-oox) are complementary telomeres.

For a player z and a position P, a z-telomere is a telomere whose front cell is z, and

within the telomere the chain containing the front cell has two liberties, and for the state

S whose history consists only of position P, the opponent of z has no legal moves into

the cells of the telomere. E.g. (-x] is an x-telomere, since for the state with position

(-x-oox), o has no legal moves to cell 1. Similarly, [xo-x-) is not an x-telomere of

position (o-xo-x-), since the front cell does not have a liberty.

For the most recent position P of a state S, a telomere is fresh if that telomere does

not appear at those locations in any earlier position in the history of S.

Theorem 6. Let S be a state with a fresh x-telomere with complement (-o-] and let P

be the most recent position of S. Then µx(S)≥ µx(P).

(-o-]

(-oo]

(x--]

(x-o]

(xx-]

(--o]

(-x-]

(oo-]

(oo-o-]

(--xo-]

(-o-o-]

(o-xo-]

(o-x-x]

(-xx-x]

(-o-oo]

(-ox--]

(-ox-o]

(-oxx-]

(-o--o]

(-o-x-]

Figure 8. Proving telomere properties of Theorem 6 and 8.

Proof. If it is x to play, x can pass. So assume it is o to play. If o passes either the game

ends (if x played first) or x can pass, and the game ends with final score µx(P) and we

are done. There are two other options for o. Figure 8 shows the lines of play for these

options. If at any point o passes then x can pass, or continue and increase the score even

further.

Theorem 7. Let S be a n-PLGo state with o to play and a fresh x-telomere with com-

plement as shown in Figure 9. Then µx(S) is at least as shown, and pruning o moves as

shown does not change the minimax value.

March 2017

complement prune lower bound on µx

(--] (**] n

(o-] (o*] n

(---] (*-*] n−5

(o--] (o**] n

(-o-] (*o*] n−5

(--o] (oo*] n

(----] (*--*] n−7

(o---] (o***] n

(-o--] (*o-*] n−7

(--o-] (*-o*] n−7

(---o] (oo-*] n−5

(o-o-] (o-o*] n−5

(-oo-] (-oo-] ?

(ooo-] (ooo*] n−5

(-----] (*----] ?

(o----] (o****] n

Figure 9. Pruning and bounds for Theorem 7. * cells pruned. ? no bound.

Proof. (sketch) Case (-o-] follows from Theorem 6. Consider case (-o--]. o moves

to 1 and 4 can be pruned: x replies at 3 and scores at least n.

Consider case (----]. If o plays at 1 or 4 then x replies at 3 and eventually scores n,

so these moves can be pruned. If o plays at 2 then x replies at 4, reducing to case (-o-],

so x scores at least n−5. If o plays at 3 then x replies at 2 and o loses all unless capturing

at 1, then x passes and o can pass and score n−7 or or play at 4 and lose all or play at 2

and leave (ooo-], in which case x captures at 4 and scores at least n−5 by case (---].

The arguments for other cases are similar. We omit the details.

Theorem 8. Let S be a state with a fresh x-telomere with complement (-o-o-] and let

P be the most recent position of S. Then every move for o, with possible exception of

playing at cell 3, yields to a state S′ with µx(S
′)≥ µx(P).

Proof. Similar to the proof of Theorem 6. It suffices to consider the cases of Figure 8.

One case arrives at (-o-x-] and leads to (-o-]: use Theorem 6 to finish the proof.

3. A PLGo solver

Following Van der Werf et al. [11,13,15] we implemented a solver based on alpha-beta

search. We considered two variants, Aspiration Window Search by Reza Shams et al. [16,

6] and MTD(f) Search by Aske Plaat et al. [5]. Initial tests showed the latter to be more

effective, so we chose it. Our implementation is enhanced with (1) iterative deepening,

(2) transposition tables, (3) enhanced move ordering seeded by game knowledge, (4)

knowledge based pruning, described in the following subsections.

It is non-trivial to extract a principal variation from MTD(f) search results, so once

the root state is solved we find a principal variation by searching again with an aspiration

window around the known minimax value.

Some PLGo scores and variations are shown in Figures 10,11,12.

March 2017

n minimax value by 1st-move location

2 -2 -

3 -3 3 -

4 -4 4 - -

5 -5 0 0 - -

6 -6 1 -1 - - -

7 -7 2 -2 2 - - -

8 -3 3 -1 1 - - - -

9 -4 0 -1 0 0 - - - -

Figure 10. n-PLGo empty-board minimax values. Missing entries follow by left-right symmetry.

3.1. Iterative deepening

Iterative deepening, a commonly used search enhancement, iteratively re-searches with a

gradually increasing search depth cutoff until the value of the state is determined. Trans-

position tables (see below) prevent much work from smaller depth cutoffs from being

repeated. If it is required that the value of all nodes in the search tree are known exactly,

then iterative deepening offers no advantage. However, all that is required for alpha-beta

search to terminate is for the upper and lower bounds to meet: this is known as a beta-

cutoff. In PLGo it is often the case that some child nodes are easy to solve while others

ar not. Iterative deepening allows us to solve easier children first, causing a beta-cutoff

to occur earlier than if more costly children had been searched first. If the search fails

to reach the beta-cutoff using only information from children solved with the current

depth cutoff, it returns an estimated value that is used as a guess in MTD(f). Unfortu-

nately, a beta-cutoff does not occur with all nodes, so in some cases all children must

be fully searched. Our enhanced move ordering, described below, also exploits iterative

deepening.

n n-PLGo short principal variations by 1st-move

2 1 2 -

3 1 2 2 -

4 1 3 2 2 3 4 - -

5 1 4 2 3 2 1 2 4 3 4 2 1 2 - -

6 1 5 2 3 2 1 2 5 3 3 2 1 5 2 4 2 - - -

7 1 6 4 2 5 3 4 5 2 6 4 3 2 1 6 2 4 2 4 6 2 - - -

8 1 7 3 6 2 4 2 2 7 5 3 2 7 4 6 4 7 2 6 - - - -

9 1 3 8 6 4 5 2 8 4 6 3 2 6 8 4 7 9 5 4 8 5 4 2 8 6 5 2 8 4 6 7 6 - - - -

Figure 11. PLGo short empty-board principal variations: after the first move, each player plays a strong move

that leads to a relatively short game. Black moves in bold.

3.2. Transposition tables

Using transposition tables in Go is made more difficult by superko rules, which requires

the history in additional to the current position, causing game states to be of variable

size and often quite large. In game playing software, it is generally sufficient to simply

use a Zobrist hash of the game state as the transposition table key since the decrease in

March 2017

solving 8-PLGo 1.b1

move 2 score seconds nodes search depth short pv

w2 -3 8186 11879007487 31 2 7 5 3 2

w3 -3 1879 2555094103 31 3 7 5 2

w4 -1 149 205699259 35 4 7 3 6 2

w5 -3 8202 11759010780 31 5 3 4 7 2

w6 1 180 258613192 31 6 7 2 5 3 6

w7 -3 33160 50349939752 43 7 3 6 2 4 2

w8 1 8051 11489810583 57 8 6 3 5

Figure 12. The hardest 8-PLGo opening. In each short pv, each player avoids prolonging the game. E.g. with

1 4 7 5 2 3 6 8 2 7 6 7 8 5 3 7 White plays optimally but prolongs the game, and with 1 4 7 5 2 3 2 1 6 8 6 7 2

6 7 8 5 4 7 5 3 5 1 4 6 4 5 2 4 8 4 7 5 6 7 8 3 1 3 2 7 3 2 1 4 5 2 4 6 4 8 5 3 5 7 4 1 4 6 8 6 5 3 4 5 2 7 4 8 6 3 7

both players play optimally but prolong the game.

performance from testing the entire state for equality outweighs that of occasional hash

colisions. However, when solving games, hash collisions can lead to incorrect results if

the entire state is not also checked for equality. To tackle this problem, we use the trans-

position table sparingly, only saving results to the table when they represent a sufficiently

large subtree of the search and are known to be exact. Our replacement scheme prefers

nodes which represent a larger amount of completed work; additionally, PV nodes are

preferred over CUT nodes or ALL nodes. An improvement might be to use graph history

interaction methods that allow states with the same position to be considered as a unit

for lookup purposes [2,1].

3.3. Enhanced move ordering

Search algorithms such as alpha-beta perform best when the best move is searched first.

Our knowledge of PLGo enabled us to construct a heuristic move order that takes advan-

tage of this property. Following Tromp, we try the pass move first [9].

1. pass, 2. cells 2 and n−1 if cells 1 and n respectively are empty, 3. even numbered cells,

counting inwards from each board end, 4. capturing moves, 5. moves that do not create

self-atari, 6. all other cells, except 1 and n, 7. cells 1 and n.

This ordering is used when a board is searched for the first time. If the same board is

searched again, moves are ordered first based on whether they are exact (such nodes will

likely be in the transposition table), then by the estimated score from the previous itera-

tion of iterative deepening, and lastly by the computational effort (estimated subtree size)

required to search them. We use a hash table that ignores collisions to store this ordering

information, frequent hash collisions can yield poor move ordering. In practice we find

collisions occur rarely, so the benefits of a fast hash table outweigh the disadvantage of

an occasionally poor move ordering.

3.4. Knowledge based pruning

We use the theorems presented in this paper to reduce search space. In particular, theo-

rems 6 and 8 are used as follows. At each node in the search tree, we check whether the

opponent’s most recent move was to a cell where she had never played: in such cases

we check whether either theorem applies, and adjust alpha-beta bounds and/or prune the

search accordingly.

March 2017

3.5. Knockout tests

To show the relative impact of our solver features, we ran a knockout test (also called

ablation test, i.e. when features are removed) on the hardest 7-PLGo and easiest 8-PLGo

openings. See Figure 13. As expected, iterative deepening move ordering is beneficial.

Other results are surprising; telomere recognition is a slight detriment, perhaps because

most cases covered are easily solved; and the transposition table is detrimental on easily

solved positions, perhaps because hashing by full history yields few successful lookups

but requires much writing. The 1-2 conjecture is not helpful on the 8-PLGo opening,

perhaps because pruning results in some cutoffs not being found.

solver feature knockout test

instance feature removed time (sec) time / all-features time

7-PLGo 1.b3 — .44 1.0

1-2 conjecture .52 1.18

total state .93 2.11

iter. deepening move ordering (IDMO) 2.1 4.77

IDMO and knowledge move ordering 27.8 63.18

loosely packed stable .73 1.66

telomere .42 .95

transposition table (TT) .30 .68

8-PLGo 1.b4 — 25.0 1.0

1-2 conjecture 14.3 .57

total state 83.4 3.34

IDMO 810.9 32.4

telomere 24.0 .96

TT 14.7 .588

Figure 13. Solver feature knockout test.

Figure 14 gives the solution to the first problem posed in Figure 2.

-x-ox- -x-o-o -xxo-o o--o-o o-xo-o oo-o-o

oo-ox- p --x-x- -ox-x- x-x-x-

Figure 14. Principal variation for Figure 2: x (black) captures all cells, minimax score +6.

4. Conclusion and Future Work

We have explored properties of Positional Linear Go and implemented a solver. Our

approach is motivated more by game theory than by algorithmic design. It would be of

interest to show further properties and to build a stronger solver.

Acknowledgements

We are grateful to Martin Müller, Erik van der Werf, Victor Allis, and the referees for

helpful comments.

March 2017

References

[1] Akihiro Kishimoto. Correct and efficient search algorithms in the presence of repetitions. PhD thesis,

University of Alberta, Edmonton, Canada, spring 2005. http://www.is.titech.ac.jp/~kishi/

/pdf_file/kishi_phd_thesis.pdf.

[2] Akihiro Kishimoto and Martin Müller. A general solution to the graph history interaction problem.

In 19th National Conference on Articial Intelligence, pages 644–649, San Jose, USA, 2004. AAAI.

https://webdocs.cs.ualberta.ca/~mmueller/ps/aaai-ghi.pdf.

[3] Christopher Moyer. How Google’s Alphago beat a Go world champion. The Atlantic, mar 2016.

[4] Martin Müller. Playing it safe: recognizing secure territories in computer go by using static rules and

search. In Proceedings of Game Programming Workshop, Hakone Japan, 1997. Computer Shogi Asso-

ciation. https://webdocs.cs.ualberta.ca/~mmueller/ps/gpw97.pdf.

[5] Aaske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie de Bruin. Best-first fixed-depth minimax algo-

rithms. Artificial Intelligence, 87(1—2):255–293, nov 1996.

[6] Reza Shams, Hermann Kaindl, and Helmut Horacek. Using aspiration windows for minimax algo-

rithms. In Proceedings of IJCAI, Sydney Australia, 1991. http://ijcai.org/Proceedings/91-1/

Papers/031.pdf.

[7] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,

Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Do-

minik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Ko-

ray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep neural

networks and tree search. Nature, 529(7587):484–489, jan 2016.

[8] John Tromp. Number of legal Go positions. https://tromp.github.io/go/legal.html, 2016,

accessed 2017-01-01.

[9] John Tromp. Solving 2x2 go. https://tromp.github.io/java/go/twoxtwo.html, 2016, ac-

cessed 2017-01-01.

[10] John Tromp. The game of Go aka Weiqi in Chinese, Baduk in Korean. http://tromp.github.io/

go.html, accessed 2017-01-01.

[11] Erik van der Werf. 5x5 Go is solved. http://erikvanderwerf.tengen.nl/5x5/5x5solved.html,

2002, accessed 2017-01-01.

[12] Erik van der Werf. First player scores for MxN Go. http://erikvanderwerf.tengen.nl/mxngo.

html, 2009, accessed 2017-01-01.

[13] Erik C.D. van der Werf, H. Jaap van den Herik, and Jos W.H.M. Uiterwijk. Solving go on small boards.

ICGA Journal, 26(2):92–107, 2003. http://erikvanderwerf.tengen.nl/pubdown/solving_

go_on_small_boards.pdf.

[14] Erik C.D. van der Werf and Mark H. M. Winands. Solving go for rectangular boards. ICGA Journal,

32(2):77–88, 2009. http://erikvanderwerf.tengen.nl/pubdown/SolvingGoICGA2009.pdf.

[15] Erik Van Der Werf. AI techniques for the game of Go. PhD thesis, Maastricht University, 2004. http:

//erikvanderwerf.tengen.nl/pubdown/thesis_erikvanderwerf.pdf.

[16] Chess Programming Wiki. Aspiration windows, 2017, accessed 2017-01-01. https://

chessprogramming.wikispaces.com/Aspiration+Windows.

