
Improved Algorithms for Weakly Chordal Graphs

RYAN B. HAYWARD

University of Alberta

JEREMY P. SPINRAD

Vanderbilt University

AND

R. SRITHARAN

The University of Dayton

Abstract. We use a new structural theorem on the presence of two-pairs in weakly chordal graphs
to develop improved algorithms. For the recognition problem, we reduce the time complexity from
O(mn2) to O(m2) and the space complexity from O(n3) to O(m+n), and also produce a hole or antihole
if the input graph is not weakly chordal. For the optimization problems, the complexity of the clique
and coloring problems is reduced from O(mn2) to O(n3) and the complexity of the independent set and
clique cover problems is improved from O(n4) to O(mn). The space complexity of our optimization
algorithms is O(m + n).

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems

General Terms: Algorithms

Additional Key Words and Phrases: Perfect graphs, weakly chordal, recognition, coloring, graph
algorithms

ACM Reference Format:

Hayward, R. B., Spinrad, J. P., and Sritharan, R. 2007. Improved algorithms for weakly chordal
graphs. ACM Trans. Algor. 3, 2, Article 14 (May 2007), 19 pages. DOI = 10.1145/1240233.1240237
http://doi.acm.org/10.1145/1240233.1240237

A preliminary version of this article appeared in Proceedings of the 11th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 2000. The first author was supported in part by NSERC, the second
author by the NSF, and the third author by the Research Council, UD.
Authors’ addresses: R. B. Hayward, Department of Computing Science, University of Alberta,
Edmonton Canada T6G 2H1, e-mail: hayward@cs.ualberta.ca; J. P. Spinrad, Department of Elec-
trical Engineering and Computer Science, Vanderbilt University, Nashville TN 37235, e-mail:
spin@vuse.vanderbilt.edu; R. Sritharan (contact author), Computer Science Department, University
of Dayton, 300 College Park, Dayton OH 45469-2160, e-mail: srithara@notes.udayton.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1549-6325/2007/05-ART14 $5.00 DOI 10.1145/1240233.1240237 http://doi.acm.org/
10.1145/1240233.1240237

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



2 R. B. HAYWARD ET AL.

1. Introduction and Motivation

A hole is an induced cycle with five or more vertices and an antihole is the com-
plement of a hole. A graph is weakly chordal (also called weakly triangulated) if
it contains no holes and no antiholes. The class of weakly chordal graphs, intro-
duced in Hayward et al. [1985], is a well-studied class of perfect graphs. Hayward
et al. [1989] characterized weakly chordal graphs via the presence of a two-pair,
namely a pair of nonadjacent vertices such that every induced path between them
has exactly two edges. Their theorem is as follows.

THEOREM 1.1 [HAYWARD ET AL. 1989]. A graph is weakly chordal if and only
if each induced subgraph either is a clique or contains a two-pair of the subgraph.

A number of algorithms on weakly chordal graphs work by repeatedly finding
a two-pair {x, y} and modifying the neighborhoods of x and/or y. This is the
basis of the previously best algorithms for recognizing weakly chordal graphs
[Spinrad and Sritharan 1995] and for solving a variety of optimization problems on
weakly chordal graphs [Spinrad and Sritharan 1995; Hayward et al. 1989] (namely,
weighted and unweighted versions of maximum clique, minimum vertex coloring,
maximum independent set and minimum clique covering). The fastest algorithm
for finding a two-pair in a sparse graph is due to Arikati and Rangan [1991] and
runs in O(mn) time. The current best algorithm to find a two-pair in a dense graph
is due to Kratsch and Spinrad [2003] and runs in O(n2.83) time; their algorithm,
similar to the one in Arikati and Rangan [1991], can actually list all the two-pairs
in the given graph. In this article we give a structural result specifying where a
two-pair can be located in a weakly chordal graph. While this does not lead to an
improvement in the time to find a single two-pair, it does lead to an improvement in
the time to find a sequence of two-pairs in a graph as the graph is modified during
weakly chordal recognition and optimization algorithms.

The previously best recognition algorithm for weakly chordal graphs [Spinrad
and Sritharan 1995] takes O(n4) time and O(mn) space. We improve on this algo-
rithm by taking O(m2) time and O(m+n) space, and producing as a certificate a hole
or antihole whenever the input graph is not weakly chordal (the previous algorithm
does not do so). This is analogous to the well-known O(m + n) time chordal graph
recognition algorithm [Rose et al. 1976], which can also produce in this time an
induced cycle of length four or more whenever the input graph is not chordal. We
note that since a preliminary version of this article [Hayward et al. 2000] appeared
Berry et al. [2000] have developed an O(m2) algorithm to recognize weakly chordal
graphs that is quite different in principle; their algorithm uses O(m2) space. Also,
very recently, Nikolopoulos and Palios presented [2004] an algorithm that can find
a hole in a graph in O(m2) time using O(mn) space. In summary, currently, the
recognition algorithm presented in this article is the only one requiring O(m2) time
and only a linear amount of space.

The previously best optimization algorithms for weakly chordal graphs [Hayward
et al. 1989; Spinrad and Sritharan 1995], based on the algorithms of Hayward et al.
[1989] and an O(mn) time algorithm for finding a two-pair [Arikati and Rangan
1991], repeat the following process: Find a two-pair and modify the graph, either
by adding an edge between vertices of a two-pair or by “collapsing a two-pair”
(defined later) to form a single vertex. In the unweighted case, the clique and
coloring algorithms [Hayward et al. 1989] take O(mn2) time, while the algorithms

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



Improved Algorithms for Weakly Chordal Graphs 3

for independent set and clique cover problems take O(n4) time; the latter prob-
lems are essentially solved by running the former algorithm on the complement
of the graph. The weighted optimization algorithms [Spinrad and Sritharan 1995],
which are based on the algorithms in Hayward et al. [1989], run in O(n4) time. We
present algorithms that can solve the unweighted independent set and clique cover
problems, which only involve collapsing two-pairs of the complement, in O(mn)
time. Running the same algorithm on the complement of the graph, we can solve
the clique and coloring problems in O(n3) time. While our optimization algorithms
correctly solve the problems on any given weakly chordal graph, they are actually
“robust” [Raghavan and Spinrad 2003] in the sense that they either correctly solve
the problem on any given input (which need not be weakly chordal) or correctly
declare that the input is not a weakly chordal graph. We next introduce the notation
used in the article.

1.1. NOTATION. Pk and Ck denote, respectively, the induced path and cycle with
k vertices. Ck is the complement of Ck . When k ≥ 5, we use hole of size at least
k to refer to an induced cycle on at least k vertices. We use n and m, respectively,
for the number of vertices and edges of a graph. Sees and misses mean “is adjacent
to” and “is not adjacent to”, respectively. We use xy to denote the edge incident on
the vertices x and y. A vertex misses an edge if it misses both vertices of the edge.
For a subset S of the vertex set V (G) of a graph G, G[S] is the subgraph induced
by S and N (S) is the neighborhood of S, namely the vertices of V (G) − S which
see some vertex of S. For graph G and edge xy of G, G − xy refers to the graph
obtained from G by deleting the edge xy, but retaining vertices x and y.

2. An Overview and a New Tool

A co-two-pair of a graph, or simply a copair, is a two-pair of the complement of
the graph. The previous use of a two-pair (or a copair) in recognition [Spinrad and
Sritharan 1995] and optimization [Hayward et al. 1989] of weakly chordal graphs
essentially relies on the facts given next.

LEMMA 2.1 [HAYWARD ET AL. 1989]. Suppose G is a weakly chordal graph
and {x, y} is a two-pair of G. Let G∗ be the graph obtained from G by deleting
vertices x and y and introducing vertex z whose neighborhood is the union of the
neighborhoods of x and y in G. Then, G∗ is weakly chordal. Further, the chromatic
number and clique number of G equal the corresponding numbers for G∗.

We refer to the operation used in Lemma 2.1 as “collapsing a two-pair”.

LEMMA 2.2 [SPINRAD AND SRITHARAN 1995]. Suppose {x, y} is a two-pair of
graph G. Let G+ be the graph obtained from G by adding the edge xy. Then, G is
weakly chordal if and only if G+ is weakly chordal.

As a graph is weakly chordal if and only if its complement is weakly chordal,
the following is immediate.

COROLLARY 2.3 [SPINRAD AND SRITHARAN 1995]. Suppose {x, y} is a copair
of graph G. Let G− be the graph obtained from G by deleting the edge xy (leaving
vertices x and y to remain). Then, G is weakly chordal if and only if G− is weakly
chordal.

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



4 R. B. HAYWARD ET AL.

Lemma 2.1 suggests the following algorithm [Hayward et al. 1989] for opti-
mizing weakly chordal graphs: Find a two-pair, collapse it, and solve the problem
recursively. Similarly, Corollary 2.3 suggests the following algorithm [Spinrad and
Sritharan 1995] for recognizing weakly chordal graphs: Repeatedly find a copair
and delete the edge involved until there are no edges left. Thus, our algorithms find
a copair of the given graph, modify the graph by either deleting the edge that corre-
sponds to the copair or by replacing the two vertices of the copair by a new vertex
with an appropriate neighborhood, and then iterate this process on the remaining
graph. In order to facilitate the repeated search for copairs, we make use of a struc-
ture called “handle” (defined later) from Hayward [1997a, 1997b]. In essence, a
handle H of a graph G is a connected set of at least two vertices with some special
properties. It is known Hayward [1997a, 1997b] that any graph containing the com-
plement of a P3 has a handle. An important fact we will prove later is that if H is a
handle of a weakly chordal graph G, then any copair of G[H ] is also a copair of G.
Therefore, we find a copair of the given graph G with H0 = V (G) by first finding a
handle H1 of G, and then repeatedly finding a handle Hi of G[Hi−1], should it exist.
It will turn out that each Hi is a proper subset of Hi−1. Also, any edge of the final
handle Hk is guaranteed to be a copair of G when G is weakly chordal. We then
modify the graph around the copair, as required by the recognition or optimization
algorithms, and then proceed to find a copair of the remaining graph.

There are several reasons as to why the use of a sequence of handles aids in making
our algorithms efficient. Essentially, after a local change is made to the graph around
the found copair, a sequence of handles to use for the location of a next copair is
almost fully available inside the sequence of handles already computed. Hence, by
restarting the algorithm that finds a copair at an appropriate state, we are able to
continue to find the next copair without starting over. In order to support this restart,
we maintain a stack of sets of vertices. When a handle Hi of G[Hi−1] is computed
by “refining” Hi−1 into Hi , we stack the set Hi−1\Hi of vertices. We note that the
computation of a handle Hi of G[Hi−1] itself is done by starting with an appropriate
candidate set X of vertices and successively refining it until we eventually finish
with the handle Hi . During each such refinement, we stack the set of vertices that is
removed from the candidate set X . On a restart, we pop the stacked sets of vertices
appropriately and restore the state of the algorithm so that the search for the next
copair can continue.

Next, we present the definition of a handle and some related necessary facts. A
handle in a graph G [Hayward 1997a, 1997b] is a proper vertex subset H with size
at least two such that G[H ] is connected, some component J �= H of G − N (H )
satisfies N (J ) = N (H ), and each vertex of N (H ) sees at least one vertex of each
edge of G[H ]. J is called a cohandle of H . Note that N (H ) is a minimal separator
of H and J .

When the vertex subset H of G with |H | ≥ 2 induces a connected component of
G, as N (H ) = ∅, H is trivially a handle of G; any other connected component of
G can be considered a cohandle of H . In this case, it is easily seen that when G is
a weakly chordal graph, any copair of G[H ] is a copair of G also. We shall prove
later that this holds for any handle H of G when G is a weakly chordal graph.

THEOREM 2.4 [HAYWARD 1997A, 1997B]. A graph has a handle if and only
if the graph has a P3, and a handle and its cohandle can be found in polynomial
time.

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



Improved Algorithms for Weakly Chordal Graphs 5

We first present an overview of our strategy by describing the connection between
the ideas of a copair, a handle, and our algorithms. Then, in the next section,
we discuss the algorithm to find a copair. We then describe our recognition and
optimization algorithms. As noted earlier, the latter algorithms need to perform
repeated searches for copairs. In order to perform these searches efficiently, a set
X of vertices of the given graph G is maintained ensuring that a copair of G can
always be found within X (i.e., in G[X ]) whenever G is weakly chordal. The
set X is refined appropriately and repeatedly until each edge in G[X ] induces a
copair of G. The graph is then modified as required by the top-level (recognition
or optimization) algorithm, and the search for a copair resumes in the modified
graph. The advantage of our method is that when the search for a copair resumes in
the modified graph, vertices are considered in essentially the same order as in the
original search. This enables us to avoid unnecessary recomputation by maintaining
a stack of vertices eliminated from X during each refinement operation. It turns out
that upon resumption of the search, the set X can be appropriately restored using
the information stored on the stack.

We condense the relevant algorithms for finding a handle from Hayward [1997a,
1997b] into the following algorithm whose details are needed for the analysis of
our algorithms. The statements tagged “r1:” and “r2:” push a set of vertices onto
the stack so that find-handle can be used by other algorithms. These statements are
not critical to understanding the working of find-handle and we comment on the
use of the stack later.

Algorithm find-handle

Input: graph G
Output: either the message ‘no handle’

or a handle H of G and a cohandle J of H

begin

/* initialization */
search for vertex v and edge e such that v misses e
if no such v, e then

return ‘no handle’ and exit
endif

Y ← component of G − N (e) containing v
X ← component of G − N (Y ) containing e
/*N (X ) = N (Y ) now minimally separates X and Y */

r1: push the set V (G) − X of vertices onto the stack

Restart-point:

/* handle finding */
while some v in N (X ) misses some e in X do

Y ′ ← component of G − N (e) containing v
X ′ ← component of G − N (Y ′) containing e /*(+)*/

r2: push the set X − X ′ of vertices onto the stack

/* N (X ′) = N (Y ′) minimally separates X ′ from Y ′ */

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



6 R. B. HAYWARD ET AL.

X ← X ′; Y ← Y ′

endwhile

H ← X ; J ← Y
end find-handle

We also use an operation called restarting, namely, reentering find-handle in the
handle-finding phase after modification of either the graph or the set X . When
restarting we assume that we have access to the stack which was used when find-
handle last exited.

2.1. IMPLEMENTATION OF ALGORITHM find-handle. We now show that the al-
gorithm find-handle can be implemented to run in O(mn) time. We first show
that the initialization phase can be implemented to run in O(m) time. An initial
v and e can be found if and only if G is not a complete multipartite graph. A
simple complete multipartite recognition algorithm is to pick any vertex x , let C
be V (G) − {x} − N (x), and check whether N (y) = N (x) for every y in C . If
so, we remove C and repeat the process. If not, then some z has been found in
N (y) − N (x) or N (x) − N (y), so {x, y, z} induces P3 and yields the desired v
and e.

It can be shown [Hayward 1997a, 1997b] that Y ⊆ Y ′, X ′ ⊆ X , and (Y ∪
N (X ) − N (e)) ⊆ Y ′ throughout the execution of the algorithm find-handle. A
key fact [Hayward 1997a, 1997b] used in proving the correctness of find-handle
is that X ′ is a proper subset of X after the step marked (+). Thus, find-handle
deletes at least one vertex from X during each iteration of the while loop. It is
clear that, barring the operation of finding vertex v in N (X ) and edge e in X such
that v misses e, an iteration of the handle-finding phase can easily be done in
O(m) time. Next, we introduce data structures which are used to ensure that the
total cost of finding such pairs v , e over the entire run of the algorithm is O(mn).
We note that these data structures are also used by other algorithms that invoke
find-handle.

We keep an ordered list NX of vertices. Vertices that at any time become part
of N (X ) are added to this list, with new vertices that become part of N (X ) being
added to the end of this list. For each vertex u in NX, we maintain NN (u), the
number of neighbors that u has in the current set X . Therefore, a vertex u belongs
to N (X ) with respect to the current set X if and only if NN (u) > 0.

The list NX is used to efficiently find vertex v of N (X ) and edge e of X such that
v misses e. For each edge e, we will want to scan NX once during the entire course
of the algorithm so that the total cost of finding such pairs v and e is O(mn). In
order to facilitate this, for each edge e in X , we keep a pointer in NX as to how far
we have already scanned NX with respect to e. The idea is that a particular vertex
v and an edge e are used to refine the set X (at most) once; since the refining of
set X leaves edge e in X and vertex v outside of X ∪ N (X ). Also, for an edge
e, once a vertex v is found to miss (not miss) e, v will always miss (not miss) e.
Therefore, if a future refinement were to occur with respect to e, we only have to
scan further down the list NX to find an appropriate vertex that misses e. The list
NX and the NN (u) values can easily be updated in O(m) time at every instance
where the set X changes its value. Thus, over the entire course of the algorithm,
for every edge e, the list NX is scanned at most once and we have the following
theorem.

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



Improved Algorithms for Weakly Chordal Graphs 7

THEOREM 2.5. Algorithm find-handle can be implemented to run in O(mn)
time.

Our algorithms modify the subgraph induced by a handle by deleting edges from
it. We conclude this section by presenting some properties of handles with respect
to such changes; the properties are easy to verify.

Property P1. Suppose H is a handle of graph G and x and y are adjacent vertices
of H . Supposing that H induces a connected subgraph of G − xy, then H is a
handle of G − xy.

Property P2. Suppose H is a handle of graph G and x and y are adjacent vertices
of H . Suppose H induces a disconnected subgraph of G−xy and H ′ is a component
of (G − xy)[H ] with at least two vertices. Then, H ′ is a handle of G − xy.

3. Finding Copairs

Given a graph, our approach to finding a copair is to first find a handle of the
graph, and then a handle of the subgraph induced by the handle found, and so on,
until we cannot repeat this process. It turns out that if a graph is weakly chordal
then every edge of the last handle found induces a copair of the graph. A handle
of a handle may not be a handle of the graph, but that property is not needed.
After performing operations on a copair as required by the relevant recognition
or optimization algorithm, we search for the next copair by restarting find-handle,
thus doing less work than in the original call to find-handle.

Algorithm find-copair

Input: graph G with at least one edge
Output: a copair of G, when G is weakly chordal

begin

j ← 0
H0 ← V (G)
while G[Hj ] has a handle H do

j ← j + 1
Hj ← H

endwhile

output any {x, y} such that xy is an edge of G[Hj ]
end find-copair

We need the following lemma in order to prove the correctness of algorithm
find-copair.

LEMMA 3.1. Suppose H is a handle of a weakly chordal graph G and {x, y}
is a copair of G[H ]. Then, {x, y} is a copair of G.

PROOF. Let J be a cohandle of H in G, I = N (H ) = N (J ), and R =
V (G) − H − I . Suppose {x, y} is a copair of G[H ] but not a copair of G.

Then, there exists an induced path P = x · · · y with at least four vertices in G.
As each vertex in R sees both x and y in G, P does not involve any vertex in R;
therefore, P has at least a vertex from I . Now, P cannot have a segment uvw such

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



8 R. B. HAYWARD ET AL.

that u and w are in H but v is in I , for otherwise, vertex v of I misses edge uw of
G[H ] in G, contradicting that H is a handle of G. Thus, at least two consecutive
vertices of P are in I and P involves at least an edge of G with both endpoints in I .

In G, consider a segment P ′ = x2x3x4 · · · xr of P with r ≥ 4 such that x2 and
xr are in H but x3 through xr−1 are in I . Observe that x3 misses x4 in G. Since
I is a minimal separator for H and J in G, and G has no holes, in G every two
nonadjacent vertices of I must have a common neighbor in J . In particular, x3 and
x4 see some vertex x1 of J in G. Thus in G, x1 sees x2, x1 misses x3, x1 misses x4,
and x1x2x3x4 is a P4. Let xk be the first vertex in P ′ after x4 such that x1 sees xk
in G; such an xk exists, as x1 sees xr in G. Then, {x1, x2, . . . , xk} induces a hole
of size at least five in G, contradicting G being weakly chordal.

THEOREM 3.2. Algorithm find-copair is correct.

PROOF. Assume that find-copair terminates after performing p iterations of the
loop. Then, G[Hp] has no P3, as any graph with a P3 has a handle. Thus G[Hp] is
a complete multipartite graph, and therefore every edge of G[Hp] induces a copair
of G[Hp]. Then, by Lemma 3.1, every edge of G[Hp] induces a copair of G[Hp−1],
since Hp is a handle of G[Hp−1]. Continuing this argument, every edge of G[Hp]
induces a copair of G.

THEOREM 3.3. Algorithm find-copair runs in O(mn) time.

PROOF. The time spent by an execution of find-copair is dominated by the total
time spent by the resulting calls to find-handle. Since find-handle is called at most
n times, the total time spent in its initialization phase over these calls is O(mn). As
discussed in Section 2.1, the total cost of finding vertex v in N (X ) and edge e in X
such that v misses e is O(mn). Finally, the total time spent in the rest of its handle-
finding phase is also O(mn), as each iteration of the loop takes O(m) time and in
each iteration at least one vertex is deleted from the set X .

Next we describe a basic strategy employed by our algorithms. Recall that at
any point during its execution, algorithm find-copair maintains a sequence of sets
V (G) = H0, H1, H2, . . . , Hk such that each Hi is a handle of the subgraph induced
by Hi−1. We refer to the last set in the sequence as the “current handle” at that point
in execution. When G[Hk] does not have a handle, find-copair outputs a pair of
adjacent vertices from Hk . Consider the time at which the very first copair {x, y} is
output. Referring back to algorithms find-handle and find-copair, X = Hk induces a
complete multipartite graph in G and each Hi is a handle of G[Hi−1]. Our algorithms
then modify the graph G essentially by deleting one or more edges from the graph.
We would now like to find a copair of the modified graph G, without having to
repeat the entire process of finding a new sequence of handles. Deletion of edges
may disconnect G[Hi ]; however, by Property P2, any connected subset of Hi with
at least two vertices is still a handle of G[Hi−1]. It then turns out that we have a new
sequence of handles existing within the old sequence and we would like to extend
this new sequence when possible. Note that we can consider any connected subset
H ′ of Hk−1 with at least two vertices as the current handle of G. We compute a subset
of H ′ as the value for the set X so that we can reenter the algorithm find-handle at
the entry point Restart-point and continue with the computation of a handle of the
current handle. Referring back to the algorithm find-handle, what we thus need to
ensure is that there is a connected subset Y of H ′ minimally separated from X in

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



Improved Algorithms for Weakly Chordal Graphs 9

H ′ by N (X ) = N (Y ). Therefore, when we restart the computation to find the next
copair, we always make sure that the set computed as the value of X satisfies this
condition. We note that our algorithms do not explicitly compute the set H ′. Instead,
the computation of set X implies the existence of an appropriate sequence of handles
such that X is a subset of the current handle. In particular, for each Hi , if we take the
vertex set of the connected component of G[Hi ] that includes X , then the sequence
of such sets will be a required sequence of handles. Our algorithms then basically
grow and shrink such a sequence of sets. Also, our algorithms process edges in
G[Hi ] before moving on to process the remaining edges in G[Hi−1]. Hence, a stack
plays a vital role in controlling this process. We now present the invariant maintained
by our algorithms that guarantees their correctness. Given the preceding discussion,
for the sake of simplicity, when we say “in graph G, Hi is a handle of G[Hj ]”, we
actually mean that any connected subset of Hi with at least two vertices is a handle
of G[Hj ].

Invariant I. For any set X computed by the algorithm find-handle, the following
are true: X ⊆ H , where H is a current handle of graph G when X is computed,
|X | ≥ 2, X induces a connected subgraph of G[H ], and there exists a component
Y of G[H ] − N (X ) such that N (X ) ∩ H = N (Y ) ∩ H . In other words, X and Y are
minimally separated by N (X ) = N (Y ) in G[H ].

We note that when X (with |X | ≥ 2) induces a connected component of G[H ],
it trivially satisfies the invariant. The following lemma shows the relevance of the
invariant to algorithms that use find-handle via find-copair.

LEMMA 3.4. Suppose an algorithm uses find-copair on a weakly chordal graph
G, ensuring that the invariant I is never violated. Then, any pair {x, y} output by
find-copair is a copair of G.

PROOF. Referring back to the working of algorithm find-handle, the fact that
set X in current handle H of graph G satisfies the invariant implies that a handle
of G[H ], when it exists, will be found inside X . This in turn implies that find-
copair computes a sequence of handles for G. Let V (G) = H0, H1, . . . , Hk be the
sequence of handles already computed when find-copair outputs {x, y}. Then, at
that instant (referring back to find-handle), X = Hk , Hk is a handle of G[Hk−1],
Hk induces a complete multipartite graph in G[Hk−1], and {x, y} is a copair of
subgraph induced by Hk in G[Hk−1]. Since X maintains the invariant I, we can use
Lemma 3.1 with G[Hk−1] in place of G and Hk in place of H to conclude that {x, y}
is a copair of G[Hk−1]. It then follows from Theorem 3.2 that {x, y} is a copair of
G also.

Referring to the algorithm find-handle, we call the operation of obtaining a
proper subset of X as the new value of X as “refining the set X”. It is obvious that
refinement of X is done around the statement tagged “r2:”. Note that X is refined
around the statement tagged “r1:” also. This happens when a handle X = Hi in the
sequence of handles for G is found, and find-copair proceeds to compute a handle
Hi+1 of G[Hi ] with the invocation find-handle(G[Hi ]). Also, during the invocation
find-handle(G[H0 = V (G)]), when set X is computed for the first time, V (G) − X
is pushed onto the stack. Therefore, at any time that a set X is refined to the new
value Z , algorithm find-handle pushes the set X − Z of vertices onto the stack.

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



10 R. B. HAYWARD ET AL.

4. Recognizing Weakly Chordal Graphs

Since our algorithm uses the basic structure of the O(n4) algorithm [Spinrad and
Sritharan 1995] for recognizing weakly chordal graphs, we review this first. Given
an arbitrary graph G as input, the algorithm in Spinrad and Sritharan [1995] repeat-
edly finds a two-pair and adds an edge between its vertices. When the algorithm
eventually fails to find a two-pair, the original graph is weakly chordal if and only
if the final graph is a clique.

A copair edge is the edge induced by a copair. Our algorithm can be thought of as
the execution of the aforementioned algorithm in the complement: repeatedly find
a copair and delete the induced edge (but not the vertices). Since a graph is weakly
chordal if and only if its complement is weakly chordal, the input graph is weakly
chordal if and only if our algorithm deletes all of its edges. We use find-copair as
the fundamental subroutine. After a copair is found and its edge deleted, the next
copair is found by restarting find-copair if the current set X still contains an edge,
and by popping back to an appropriate previous level to compute a new value for the
set X otherwise. In this section we show that our recognition algorithm is correct
and takes O(m2) time.

Algorithm wc-recognition

Input: graph G with at least one edge
Output: ‘yes’ if G is weakly chordal, ‘no’ otherwise
Shared variables: the following variables of find-handle:

the stack,
the set X ,
the ordered list NX, and
NN (u) for each vertex u in NX

begin

{x, y} ← find-copair(G) /* the first one */
repeat

if {x, y} is not a copair of G then

return ‘no’
endif

G ← G − (edge xy) /* vertices x , y remain */
if G has at least an edge then

restart find-copair after adjusting value of X in find-handle
to compute the next pair {x, y} as explained below

endif

until (G has no edges)
return ‘yes’

end wc-recognition

We now explain how the restarting of find-copair is done. This operation, as it
is, will be used by our optimization algorithms also. Let V (G) = H0, H1, . . . , Hk
be the sequence of handles computed just before the edge xy was deleted from G.
After the edge xy is deleted, X = Hk may no longer be a handle of G[Hk−1]. We
compute a subset of Hk−1 as value for X such that in G[Hk−1], some connected
subset Y is minimally separated from X by N (X ). This enables find-copair to

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



Improved Algorithms for Weakly Chordal Graphs 11

resume computing a handle of G[Hk−1] by reentering find-handle at the entry point
Restart-point. Next we provide the details of this operation.

Algorithm for restarting find-copair

begin

Xold ← X
if X induces an independent set then

repeat

Xold ← Xold ∪ (set popped from stack)
until (stack is empty) or (Xold is not an independent set)

endif

if Xold does not induce an independent set then

X1 ← a component of G[Xold ] with |X1| ≥ 2
X ← X1

push the set Xold − X of vertices onto stack
Resume execution of find-copair by reentering find-handle at the

entry point Restart-point
else /* graph has no edges left */

return

endif

end

Note that when Xold is not an independent set, some connected component of
G[Xold] with at least an edge, possibly X itself, becomes the new value for X .
Also, supposing that the stack becomes empty and set Xold is not an independent
set, then all edges in the sequence of handles have been processed and G[Xold] is
the graph remaining at this instant. We must then process this graph by computing a
new sequence of handles. This will be accomplished as some connected component
of G[Xold] with at least two vertices is computed as the value for X . This set will
subsequently be found to be a handle of the graph at that instant in algorithm
find-handle. Finally, suppose the stack becomes empty, but the set Xold induces
an independent set. Then, it means that every edge in the original graph has been
processed already.

It is not difficult to test in O(m + n) time whether an edge induces a copair, as
we now explain. Nonadjacent vertices form a two-pair if and only if removing their
common neighbors leaves the vertices in different components, so adjacent vertices
form a copair if and only if removing their common nonneighbors leaves the
vertices in different components of the complement. Given two vertices, it is easy
to remove their common nonneighbors in O(n) time, and to determine in O(m + n)
time whether in the reduced graph the vertices are in the same component of the
complement, for example by starting from one of the two vertices and constructing
a breadth first search tree of the reduced graph’s complement. Since testing whether
an edge induces a copair takes O(n + m) time, and since each edge is deleted imme-
diately after being tested, the total time spent on this task over the whole algorithm
is O(m2).

THEOREM 4.1. Algorithm wc-recognition is correct.

PROOF. In view of Theorem 1.1 and Corollary 2.3, we only have to argue that
when wc-recognition is invoked on a weakly chordal graph, every pair {x, y} output

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



12 R. B. HAYWARD ET AL.

by find-copair is a copair of the graph at that instant. Again, given Lemma 3.4, we
can accomplish this by showing that any set X computed by find-handle during the
execution of wc-recognition is consistent with the invariant I. The correctness of
algorithm find-copair guarantees that up to the point at which the very first pair is
output, the invariant I is maintained.

Suppose at a particular instant G is a weakly chordal graph and V (G) = H0, H1,
. . ., Hk is the sequence of handles already computed when pair {x, y} is output by
find-copair. Recall that we compute G ′ = G − xy and restart find-copair. Given
that the invariant I is maintained thus far, we need to show that the invariant is
maintained when a new value for X is computed from X = Hk after the edge xy is
deleted. First, (by Property P2) for 1 ≤ i ≤ k, any connected component of G ′[Hi ]
that has at least two vertices is still a handle of G ′[Hi−1]. Therefore, we only need
to concern ourselves with Hk , the current handle for G. We consider the various
ways in which the algorithm could have progressed. Note that whenever X equals
the current handle of the present graph, the invariant I is maintained; simply take
the cohandle of the current handle (with respect to the subgraph induced by the
previous handle) as the set Y .

Suppose G ′[X ] is connected. Then, by Property P1, X is a handle of G ′[Hk−1],
and therefore X is the current handle of G ′ and I is maintained.

Suppose G ′[X ] is disconnected and X1 is a component of G ′[X ] with at least
two vertices. Then, the algorithm proceeds with X = X1. By Property P2, X1 is a
handle of G ′[Hk−1], and therefore X is the current handle of G ′ and I is maintained.

Suppose X induces an independent set. Then, the algorithm repeatedly pops the
stack, combining the sets popped with X to eventually arrive at set Xold . Let X1
be a connected component of G ′[Xold] with at least two vertices. The algorithm
proceeds with X = X1. Next we want to show that X = X1 is consistent with the
invariant I. Let Gold be the graph when Xold was first computed as the value of
X . Let Yold be the connected set minimally separated from Xold by N (Xold) in the
handle current at that instant.

If Xold was ever found to be a current handle of Gold , then by property P2, X1 is
a current handle for G ′ and therefore I is maintained.

Therefore, we can assume that Xold did not become a current handle for Gold
and Xold was refined leaving set R on the stack. Let Hr be the handle that was
current when Xold was first computed as the value for X . Clearly, Xold , Yold , and
N (Xold) are vertex subsets of Hr . Note that Yold induces a connected subgraph of
G ′[Hr ] and every vertex in N (Xold) sees some vertex in Yold in G ′[Hr ]. Therefore,
any connected component of G ′[Hr ] that includes a vertex of N (Xold) must include
all the vertices in Yold . Observe that any path in G ′[Hr ] from a vertex in X1 to a
vertex not in X1 must pass through some vertex in N (Xold). Let H ′ be the connected
component of G ′[Hr ] that includes X1. Then, by Property P2, the vertex set of H ′
is a handle of G ′[Hr−1] and a current handle of G ′. In H ′, let S be the set of those
vertices of N (Xold) each of which sees some vertex in X1. If S = ∅, then X1 is the
vertex set of H ′ and therefore is a current handle of G ′. Then, X = X1 satisfies
the invariant. Now suppose S is a nonempty set. Then, S separates X1 from Yold in
H ′. Also, as S ⊆ N (Xold), and N (Xold) was a minimal separator for Xold and Yold
when Xold was first refined, every vertex of S sees some vertex of Yold . Let Y ′ be
the component of H ′ − S that contains all the vertices of the connected set Yold .
Then, in H ′, X1 is minimally separated from Y ′ by S satisfying the conditions of
the invariant I.

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



Improved Algorithms for Weakly Chordal Graphs 13

THEOREM 4.2. Algorithm wc-recognition determines whether G is weakly
chordal in O(m2) time.

PROOF. Recall that the algorithm maintains a sequence of sets V (G) = H0,
H1, . . ., Hi , and that at any point in time, we are dealing with G[H = Hi ]; we call
H the current context. Note that it is easy to maintain the current context so that
adjacencies are computed with respect to the current context. When a new handle
Hj is computed, the context changes to Hj . Also, when a handle X = Hj is refined
in the initialization step of find-handle, we can mark that so that during the restart,
while popping the stack, if Xold ever equals some Hi , then context can be changed
to Hi−1, since Xold was computed to be X in the context Hi−1. We use the data
structures NX and NN (u) as maintained by the algorithm find-handle. Therefore,
a vertex u of H belongs to N (X ) with respect to the current set X if and only if
NN (u) > 0.

As noted earlier, whether a pair {x, y} is a copair can be tested in O(m) time. As
such a test is done O(m) times, the total cost of these operations is O(m2).

We next consider the operation of finding a vertex v from N (X ) and an edge e
in X such that v misses e (in order to refine the set X ). With respect to a particular
vertex v and an edge e, refinement is done at most once; for the refinement leaves
edge e in X and vertex v outside of X ∪ N (X ). In the future if v were to return to
N (X ), edge e would already have been deleted from the graph. Also, for an edge
e, once a vertex v is found to miss (not miss) e, v will always miss (not miss) e.
Therefore, when a future refinement occurs with respect to e, we only have to scan
further down the list NX to find an appropriate vertex that misses e. Thus, for each
edge e of X , we will already have checked to see whether e has missed neighbors
of X up through some vertex w on NX; we start our search from w and continue.
Since each edge is checked against each vertex once, the total work in finding v
and e through the whole algorithm is O(mn).

A straightforward implementation of the rest of the refinement operation can be
done in O(m) time. Each time a set X is refined to a set X ′, the edges of G[X ′]
will never be in a subgraph together with edges outside of G[X ′]. We may think of
each step as subdividing a set of edges: each refinement step increases the number
of subsets of edges, so there are at most m refinement steps. Thus, total time spent
on all the refinements is O(m2).

We now consider the initialization step of find-handle. Barring the very first
invocation (on the entire input graph), any invocation of find-handle is on some set
X = H that is found to be a current handle. Therefore, the number of invocations
of find-handle is bounded by the number of refinement steps and is O(m). As the
time spent in the initialization phase for each such invocation is O(m), the total
time spent in the initialization steps is O(m2). Also, when a new value for set X is
computed in the initialization step, we add N (X ) computed to the list NX, updating
the NN (u) value for each vertex u of N (X ) and we set the context to H .

Finally, we show that a restart after the deletion of a copair edge can be done
in O(m) time. As vertices in X are marked, we can scan the adjacencies of ver-
tices in Xold = X to check whether X induces an independent set. If it does,
then we repeatedly pop a set of vertices from the stack and combine it with Xold ,
until Xold does not induce an independent set. When we pop a set of vertices
from the stack, we update the context as required. Also, once we pop a set of ver-
tices and mark its members to belong to Xold , we scan the adjacencies of each

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



14 R. B. HAYWARD ET AL.

of the vertices thus added to check whether it has a neighbor in Xold . Thus, ar-
riving at a set Xold that does not induce an independent set can be done in O(m)
time. Clearly, computing a connected subset of Xold , with at least two vertices, as
the new value of X can be done in O(m) time. Then, we simply allow ourselves
O(m) time to update the NN (u) value for each neighbor u of X . As a restart is
done only after deletion of a copair edge, the overall time thus spent on restarts
is O(m2).

5. Finding a Proof that a Graph is Not Weakly Chordal

The recognition algorithm of the previous section, like that of Spinrad and Sritharan
[1995] on which it is based, does not provide the most natural evidence that a graph
is not weakly chordal, namely, a hole in either the graph, or its complement when
it returns ‘no’. In this section we show how the algorithm wc-recognition can be
modified to find a hole or antihole in a graph that is not weakly chordal such that
the running time of the algorithm is dominated by that of the recognition algorithm.
In contrast, if the O(n4) recognition algorithm of Spinrad and Sritharan [1995] is
used, we get no information about where a hole or antihole might be when the input
graph is not weakly chordal.

Note that by Corollary 2.3, deletion of the edge corresponding to a copair from
a graph neither creates nor destroys any holes or antiholes. Our basic idea is that
the very first pair of vertices encountered by algorithm wc-recognition which is not
a copair of the graph at that point can be used as a starting point to find a hole or
antihole of the input graph. We need the following lemma whose proof uses ideas
similar to those used in the proof of Lemma 3.1.

LEMMA 5.1. Suppose H is a handle of graph G and {x, y} is a copair of G[H ]
but not a copair of G. Then, a hole or an antihole of G can be found in O(n2) time.

PROOF. Let J be a cohandle of H , I = N (H ) = N (J ), and R = V (G)−H − I .
Since {x, y} is not a copair of G, In G there is an induced path with at least

four vertices connecting x and y. Choose such a path P as follows: In G delete
the common neighbors of x and y and find a shortest path between x and y in the
resulting graph.

In G, as every vertex in R sees both x and y, the induced path P cannot involve
vertices from R. Moreover, since {x, y} is a copair of G[H ], P must involve vertices
from I .

Now, P cannot have a segment uvw such that u and w are in H , but v is in I .
Otherwise, in G, vertex v of I will miss the edge uw of G[H ], contradicting the
assumption that H is a handle of G. Therefore, in G, the P must have at least an
edge in I .

In G, compute a segment P ′ = x2x3x4 . . . xr r ≥ 4 of P such that x2 and xr are
in H but x3 through xr−1 are in I ; observe that x3 misses x4 in G.

Suppose in G that x3 and x4 do not have a common neighbor in J . Compute P∗,
namely, a shortest path in G between x3 and x4 such that all vertices of P∗ except x3
and x4 belong to J ; observe that P∗ must have at least three edges. Then, compute
P∗∗, a shortest path in G between x3 and x4 such that all vertices of P∗∗ except x3
and x4 belong to H . Then, union of P∗ and P∗∗ is a hole in G.

On the other hand, suppose x3 and x4 see vertex x1 of J in G. Then, in G, x1

sees x2, x1 misses x3, and x1 misses x4, making x1x2x3x4 a P4. In G, let xk be the

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



Improved Algorithms for Weakly Chordal Graphs 15

first vertex that comes after x4 in P ′ such that x1 sees xk ; there must be such a
vertex, as x1 sees xr in G. Then, {x1, x2, . . . , xk} induces a hole of size at least five
in G. Every step of the previous algorithm takes O(n2) time and there is a constant
number of steps in the algorithm, making the time complexity O(n2).

We next show how to find an appropriate graph G and its handle H satisfying
conditions of Lemma 5.1 when algorithm wc-recognition returns ‘no’.

THEOREM 5.2. Suppose algorithm wc-recognition returns ‘no’ on an input
graph and {x, y} is the pair returned by the algorithm find-copair at that point.
Then, graph G and its handle H satisfying conditions of Lemma 5.1 can be found
in O(mn) time.

PROOF. Refer to algorithm wc-recognition. Let G ′ be the graph present at the
instant the algorithm returns ‘no’. Referring back to the algorithm find-copair, let
V (G ′) = H0, H1, H2, . . . , Hp be the sequence of handles computed up to this point.
As xy is an edge of G ′[Hp] and G ′[Hp] is a complete multipartite graph, {x, y} is a
copair of G ′[Hp]. Also, as the algorithm wc-recognition returns ‘no’, {x, y} is not a
copair of G ′. Find the largest k such that {x, y} is a copair of G ′[Hk] but not a copair
of G ′[Hk−1]. Note that Hk is a handle of G ′[Hk−1]. We then take G = G ′[Hk−1]
and H = Hk . It is easy to maintain the sets Hi so that such Hk−1 and Hk can be
found in O(mn) time.

6. Optimization Problems

In this section, we demonstrate that algorithm find-copair can be used to improve the
time complexity of unweighted optimization problems on weakly chordal graphs.

The algorithm for solving unweighted independent set, coloring, clique, and
clique cover problems on weakly chordal graphs was first discovered in Hayward
et al. [1989] and is based on the following operation: Repeatedly find a two-pair
{x, y}, and collapse the two-pair to a single vertex z with N (z) = N (x) ∪ N (y).
This works for the clique and coloring problems; for independent set and clique
cover, the algorithm is run on the complement graph, which is also weakly chordal.
The running time is dominated by, at most, n two-pair-finding iterations; using
the algorithm of Arikati and Rangan [1991] this takes O(mn2) time. We show that
we can solve the independent set and clique cover problems on G in O(mn) time
essentially by simulating the aforementioned algorithm for clique and coloring
problems on the complement of G.

Since we find a two-pair of the complement in our algorithm, the effect of an
identification operation of a two-pair {x, y} in G is to add a new vertex z such that
N (z) = N (x) ∩ N (y), and then delete the vertices x and y. However, an equivalent
way of viewing the operation is to consider it as a sequence of deletion of edges as
follows: Mark x to be z in the new graph, delete every edge incident on y, mark y
as deleted, and delete every edge xw such that w ∈ N (x) − N (y).

Algorithm wc-opt can be defined as follows: When find-copair returns the pair
{x, y} we identify x and y into vertex z, as explained before. We also replace x
and y with z in the set X maintained by find-handle. We then use the operation of
restarting find-copair as explained in Section 4 and proceed with finding a copair.
As computing (in the complement) a largest clique and optimum coloring of the
larger graph from those of the smaller graph is explained in Hayward et al. [1989],

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



16 R. B. HAYWARD ET AL.

we omit these details and concern ourselves only with the implementation of the
successive identification operations.

We will show that wc-opt can be implemented to run in O(mn) time. The im-
plementation of the optimization algorithm is more complex than our previously
discussed implementation of the O(m2) time recognition algorithm.

THEOREM 6.1. Algorithm wc-opt is correct.

PROOF. In view of Lemma 2.1, we need only argue that when wc-opt is invoked
on a weakly chordal graph, every pair {x, y} output by find-copair is a copair of the
graph at that instant. Again, given Lemma 3.4, we can accomplish this by showing
that any set X computed by find-handle during the execution of wc-opt is consistent
with the invariant I. The correctness of algorithm find-copair guarantees that up
until the point at which the very first pair is output, the invariant I is maintained.

Suppose at a particular instant that G is a weakly chordal graph and V (G) = H0,
H1, . . ., Hk is the sequence of handles already computed when pair {x, y} is output
by find-copair. Given that the invariant I is maintained thus far, we need to show
that the invariant is maintained when a new value for X is computed from X = Hk
after the copair {x, y} is identified and algorithm find-copair is restarted. Let G ′ be
the graph obtained from G by identifying the copair {x, y} into vertex z.

Any edge that is deleted clearly has at least one endpoint in X . First consider
the effect of deleting an edge, one of whose endpoints is not in X . In particular, let
us consider the case when one of the endpoints is in N (X ) in G[Hk−1]. It is now
possible for a vertex w ∈ N (X ) not to have a neighbor in X any more. Since such
a vertex w has a neighbor in Y (the connected set that is minimally separated from
X in G[Hk−1]), we can instead treat w as part of Y . In this case, as the endpoint
not in X must belong to a separating set for some set computed as the value of
X in the past, essentially the same logic applies to every set computed as X thus
far, including those computed to be a current handle at some point. Thus, logically,
we can think of N (X ) in G[Hk−1] as being the set resulting after moving all such
vertices to Y , and likewise for all sets computed as X thus far, including the sets
Hi in the sequence of handles.

Further, consider Hi−1 and Hi such that zw is an edge of G ′[Hi ]. Clearly, w sees
both x and y in G. In G ′[Hi−1], for any vertex u in N (Hi ), suppose u misses w .
Then, as Hi was a handle of G[Hi−1], u must see both x and y in G. Thus, u sees
z in G ′. Therefore, for any vertex u in N (Hi ) in G ′[Hi−1], and edge vw with both
endpoints in Hi , u sees at least one of v , w . Finally, as a result of moving vertices,
for a set Z computed to be the value of X at some point in some Hj , suppose N (Z )
in G ′[Hj ] becomes empty. Then, Z induces the union of connected components of
G ′[Hj ], and hence any connected subset of Z with at least two vertices is trivially
a handle of G ′[Hj ]. Therefore, after deletion of edges with exactly one endpoint
in X , (by Property P2), for 1 ≤ i ≤ k, any connected component of G ′[Hi ] that
has at least two vertices is still a handle of G ′[Hi−1]. Therefore, we only need to
concern ourselves with Hk , the current handle for G, and the effect of deleting edges
with both endpoints in X . The effect of deletion of such an edge on maintaining
the invariant was dealt with in the proof of Theorem 4.1. Therefore, regardless of
whether G ′[X ] is connected, disconnected but has a connected component with at
least two vertices, or induces an independent set, the arguments of Theorem 4.1
can be used to establish that invariant I is maintained after the restart also.

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



Improved Algorithms for Weakly Chordal Graphs 17

We now show that the algorithm wc-opt can be implemented to run in O(mn)
time. Recall that the algorithm maintains a sequence of sets V (G) = H0, H1, . . .,
Hi and that at any point in time, we are dealing with G[H = Hi ]; we call H the
current context. Similar to the case of the recognition algorithm, we will argue that
the total time spent finding a vertex v in N (X ) and an edge e in X such that v
misses e is O(mn). However, in previous arguments, our time bound was derived
from the fact that the rest of a single refinement of the set X in the current context
took O(m) time. There are several such steps that take O(m) time; finding vertex
v that misses edge e in G[H ] in the initialization phase of find-handle followed
by the computation of sets X and Y , finding the connected component Y ′ of v
in G[H ] − N (e), marking neighbors of Y ′, and finding the connected component
containing e in the subgraph of G[H ] induced by X − N (Y ′) (whose vertex set
becomes the new value for X ). Then, there are the operations of identifying a copair
and restarting the algorithm find-copair.

We will show that if we ignore a total cost of O(mn), a single refinement step can
be made to run in O(m X ) time, where m X is the number of edges in the subgraph
induced by X . We will then use the new bound on an individual step to get an
O(mn) upper bound on the entire work done by the optimization algorithm.

We use the data structures NX and NN (u) as maintained by the algorithm find-
handle. Therefore, a vertex u of H belongs to N (X ) with respect to the current set
X if and only if NN (u) > 0.

We will want to scan NX for each edge e once during the entire course of the
algorithm so that the total cost of finding such pairs v and e is O(mn). Again, the
idea is that with respect to a particular vertex v and an edge e, refinement is done at
most once; for the refinement leaves edge e in X and vertex v outside of X ∪ N (X ).
If in the future v were to return to N (X ), edge e would already have been deleted
from the graph. Therefore, when a future refinement occurs with respect to e, we
need only scan further down the list NX to find an appropriate vertex that misses
e. Also, for an edge e none of whose endpoints is ever found to be part of a copair,
once a vertex v is found to miss (not miss) e, v will always miss (not miss) e.
However, for an edge zw , where z is the vertex obtained by identifying a copair
{x, y}, a vertex that previously saw one of the edges xw or yw could now miss the
edge zw . We show later that this can be handled by scanning the list NX from the
beginning for such an edge zw .

As far as implementation of identifying a copair {x, y} into vertex z is concerned,
we simply delete vertices x and y from the graph and from set X , introduce vertex
z into the graph and into set X , and make N (z) = N (x) ∩ N (y).

THEOREM 6.2. Algorithm wc-opt can be implemented to run in O(mn) time.

PROOF. As noted in the proof of Theorem 4.2, it is easy to maintain the current
context so that adjacencies are computed with respect to the current context.

We first consider the initialization step of find-handle. Barring the very first
invocation (on the entire input graph), any invocation of find-handle is on some set
X = H that is found to be a current handle. For one such invocation, the time spent
in the initialization phase is O(m X ). Therefore, the total time spent in initialization
steps is bounded by the total number of edges induced by all the X sets, plus an
extra cost of O(m) for the first invocation. Also, when a new value for set X is
computed in the initialization step, we add N (X ) computed to the list NX, updating
the NN (u) value for each vertex u of N (X ), and we set the context to H .

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



18 R. B. HAYWARD ET AL.

We next consider the operation of finding a vertex v from N (X ) and an edge e
in X such that v misses e (in order to refine the set X ). For each edge e of X , we
will already have checked to see whether e has missed neighbors of X up through
some vertex w on NX; we start our search from w and continue. Since each edge
is checked once against each vertex, the total work in finding v and e through the
whole algorithm is O(mn).

The next task which uses O(m) time is computing Y ′, the component of
G[H ] − N (e) containing vertex v , and then subsequently finding N (Y ′). Set X ′,
the component of G[H ] − N (Y ′) containing e, then becomes the new value of X .

We do not explicitly recompute the component Y ′. Instead, we implement this
by moving vertices from X . We make sure that vertices which must go to Y ′ will
be placed in Y ′. Also, those vertices that must be placed in N (X ′) are placed there.
We can then simply break the subgraph induced by the remaining set X to find X ′,
namely the connected component containing e.

First, note that every member of N (X )−N (e) will be added to Y ′; these can easily
be found in O(n) time. If a vertex u of X is not in N (e) and is adjacent to a vertex
moved from N (X ) to Y ′, it is added to Y ′; note that we will also add its connected
component in X − N (e) to Y ′, but the work done in finding this component can all
be charged to the edges in X , and hence this cost is O(m X ).

We now must find neighbors of Y ′. When a vertex y is moved into Y ′, we scan
its adjacency list, appropriately updating the values maintained (if y is moved
from X , all neighbors in N (X ) have their number of neighbors in X decreased
by one), and moving neighbors of y from X to N (X ). When neighbors of y
are moved to N (X ), we also update the appropriate values. Note that Y ′ subse-
quently becomes the set Y . A vertex can be moved into Y at most n-1 times, since
a vertex will never return to X or N (X ) until identification of a copair is per-
formed. Similarly, a vertex can be moved into N (X ) at most n-1 times, since it
will not return to X before an identification of a copair is performed. Thus, the
total time spent scanning adjacency lists while moving vertices to Y and N (X ) is
O(mn).

The final step of refinement, for which we allowed O(m) time, was finding
connected components in the new set X so that we can locate the component X ′
containing e; but this step clearly takes O(m X ) time.

When a copair {x, y} is identified into vertex z, we scan the neighbors of each
of x and y to update the NN (u) value for every neighbor u. Also for each edge zw ,
we set-up zw to point to the beginning of the list NX to facilitate a scan from the
beginning. Scanning NX for such edges will cost us O(degree(z)∗n). However, as
degree(z) ≤ min(degree(x), degree(y)), and as a vertex is deleted from the graph
whenever a copair is identified, we can charge this cost to the vertex deleted. Thus,
the overall cost of scans associated with all such edges zw is O(mn).

Finally, as argued in the proof of Theorem 4.2, a restart after the identification of
a copair can be done in O(m) time. As a restart is done only after an identification
of a copair, the overall time thus spent on restarts is O(mn).

Therefore, the running time of the algorithm is O(mn) plus the sum of the number
of edges in all X sets created during the algorithm.

Each edge is part of (at most) n such X sets, as each time that an edge is
placed in an X set, the size of X decreases by at least one. Thus the total size
of all sets of edges induced by X sets is O(mn), and our algorithm runs in O(mn)
time.

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.



Improved Algorithms for Weakly Chordal Graphs 19

Note that our optimization algorithm runs faster than the recognition algorithm.
Thus, we can imagine a potential for the algorithm to make mistakes if the input
is not weakly chordal, as there is no time to run a recognition algorithm to check
whether the input is in the class. Fortunately, the correctness of the optimization
algorithm depends only on the fact that each pair output by find-copair is a copair
of the graph at that instant; this can be checked within the time bounds given. Thus,
the algorithm works correctly on all weakly chordal graphs, and will also correctly
solve the problems in some cases when the input is not weakly chordal.

7. Conclusions and Open Problems

We have demonstrated the use of the notion of a handle in a graph, that is, a
combination of a special type of connected component and separator, to design
efficient algorithms for the class of weakly chordal graphs. We conclude the article
by proposing some problems for further work.

With the recent result in Nikolopoulos and Palios [2004], disregarding the space
complexity, the time complexities of the currently best algorithms for recogniz-
ing weakly chordal graphs and for finding a hole in a graph are the same. This
seems counterintuitive: Given the structural properties exhibited by weakly chordal
graphs, we would expect that recognizing such graphs would be computationally
easier than determining whether an arbitrary graph has a hole. On top of this,
we have demonstrated that optimizing on weakly chordal graphs can currently be
done faster than recognizing weakly chordal graphs. Thus a natural problem is:
Design an algorithm with a complexity of o(m2) for recognizing weakly chordal
graphs. Another problem is improving the efficiency of the algorithms for weighted
optimization problems on weakly chordal graphs.

REFERENCES

ARIKATI, S., AND RANGAN, C. 1991. An efficient algorithm for finding a two-pair, and its applications.
Discrete Appl. Math. 31, 71–74.

BERRY, A., BORDAT, J. P., AND HEGGERNES, P. 2000. Recognizing weakly triangulated graphs by edge
separability. Nordic J. Comput. 7, 164–177.

HAYWARD, R. B. 1985. Weakly triangulated graphs. J. Combinatorial Theory Series B 39, 200–209.
HAYWARD, R. B. 1997a. Meyniel weakly triangulated graphs. I. Co-Perfect orderability. Discrete Appl.

Math. 73, 199–210.
HAYWARD, R. B. 1997b. Meyniel weakly triangulated graphs. II. A theorem of Dirac. Discrete Appl.

Math. 78, 283–289.
HAYWARD, R. B., HOÀNG, C. T., AND MAFFRAY, F. 1989. Optimizing weakly triangulated graphs.

Graphs Combinatorics 5, 339–349; erratum in 6 1990, 33–35.
HAYWARD, R. B., SPINRAD, J. P., AND SRITHARAN, R. 2000. Weakly chordal graph algorithms via

handles. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
42–49.

KRATSCH, D., AND SPINRAD, J. P. 2003. Between O(mn) and O(nα). In Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 158–167.

NIKOLOPOULOS, S. D., AND PALIOS, L. 2004. Hole and antihole detection in graphs. In Proceedings of
the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 843–852.

RAGHAVAN, V., AND SPINRAD, J. P. 2003. Robust algorithms for restricted domains. J. Alg. 48, 160–172.
ROSE, D. J., TARJAN, R. E., AND LEUKER, G. S. 1976. Algorithmic aspects of vertex elimination on

graphs. SIAM J. Comp. 5, 266–283.
SPINRAD, J. P., AND SRITHARAN, R. 1995. Algorithms for weakly triangulated graphs, Discrete Appl.

Math. 19, 181–191.

RECEIVED MARCH 2005; REVISED JUNE 2006; ACCEPTED JULY 2006

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 14, Publication date: May 2007.


