
journal of algorithms 12, 126-153 (1991)

Average Case Analysis of Heap Building by
Repeated Insertion

Ryan Hayward∗

Computer Science Dept., Rutgers University, New Brunswick, N.J. 08903 U.S.A.

and

Colin McDiarmid

Department of Statistics, Oxford University, England

Received November 22, 1988; revised January 2, 1990

We show that the average number of swaps required to construct a heap on n
keys by Williams’ method of repeated insertion is (ω + o(1))n, where the constant
ω is about 1.3. Further, with high probability the number of swaps is close to this
quantity. These results build on earlier work of Bollobás and Simon, and of Frieze.

c©1991 Academic Press, Inc.

1 Introduction

An array A[1], . . . , A[n] is a (min) heap if A[⌊i/2⌋] ≤ A[i], for i = 2, . . . , n.
The heap is a much used and much studied data structure (for example, see
Knuth [K]).

Williams’ method for constructing a heap involves repeatedly inserting
a key at the bottom of the heap and ’bubbling’ it up. This method requires
Θ(n log n) time in the worst case. Let Wn denote the number of ’swaps’ (or
’promotions’) performed in the building of a heap with n keys (see Appendix
1 for a precise definition).

We make the usual assumption that each initial permutation of the keys
is equally likely. It is shown by Bollobás and Simon [BS] and Frieze [F] that
for perfect heaps (that is, for n equal to 2k−1) the expected number E[Wn]

∗ Research supported in part by an Alexander von Humboldt-Stiftung fellowship.

2 HAYWARD AND MCDIARMID

of swaps satisfies

(0.75 + o(1))n ≤ E[Wn] ≤ (1 + φ)n (1.1)

where φ =
∑

j≥1 1/(1 + 2j) ≈ 0.7645. It is also shown in [F] that for any
ε > 0 there is a constant δ > 0 such that

Prob{Wn/n > (1 + φ + ε)n} < exp(−δn1/10). (1.2)

At the recent Bellairs Research Workshop on Combinatorics (1988) Frieze
asked whether better bounds could be found for E[Wn], and a slight im-
provement in the lower bound was obtained by Devroye [De]. We show the
following result.

Theorem 1.3

(a) There exists a constant ω such that E[Wn]/n→ ω as n→∞.
(b) 1.2778 . . . < ω < 1.2994
(c) For any ε > 0, Prob{|Wn/n− ω| > ε} = o(exp(−n/ log4 n)).

Parts (a) and (b) strengthen (1.1), and part (c) strengthens (1.2). Ex-
trapolation of numerical results suggests that ω ≈ 1.283.

In order to compare Williams’ repeated insertion method with other
methods of heap construction, let us restate parts (a) and (b) in terms of
the number Cn of key comparisons. Call a key a ‘new minimum’ if it is
smaller than all previous keys. Note that Cn = Wn + n −Mn, where Mn

is the number of ‘new minima’, and E[Mn] = 1 + 1/2 + . . . + 1/n ≈ ln(n).
(Throughout the paper we use ln(n) for the log base e and lg(n) for the log
base 2.) Hence we have

E[Cn]/n→ 1 + ω, where 2.2778 < 1 + ω < 2.2994. (1.4)

Floyd’s method of heap building (see Floyd [F] or Knuth [K]) involves
repeatedly merging small heaps to form bigger heaps. This method requires
(2+o(1))n comparisons in the worst case to build a heap with n keys, which
is less than Williams’ method takes on average. The average-case behaviour
of Floyd’s method, and variants, has been well studied. Knuth [K] (see also
Doberkat [Do]) shows that the expected number of comparisons for the basic
method is about 1.88n. Carlsson [C] and independently McDiarmid and
Reed [MR] show that by changing the ’trickledown’ method this expected
number drops to about 1.65n. Further, it is shown in [MR] that if all
comparisons are remembered, then the two numbers drop to about 1.79n and
1.52n respectively, and for each variant there is strong concentration around

AVERAGE CASE FOR HEAP BUILDING 3

the mean. For further discussion on heaps, and for the heap-building method
with the best known worst-case number of comparisons (namely 1.625n), see
[GM].

This paper is organized as follows. In the next section we develop some
qualitative results useful for investigating the expected number of swaps
E[Wn] and show that the Williams’ heap building constant ω exists (part
(a) of the theorem). The key observation of this section, Observation 2.1, is
the cornerstone of our analysis. In section 3 we present a polynomial time
algorithm to compute E[Wn] and related quantities, and in section 4 we
use various computed quantities to establish bounds on ω (part (b) of the
theorem). Section 5 is devoted to proving part (c) of the theorem. Section
6 contains a brief discussion concerning repeated insertion into equiproba-
ble heaps, as a possible approximate analysis of Williams’ method (which
does not yield equiprobable heaps). Finally, in section 7 we present a few
concluding remarks.

2 Qualitative results for expected times

In this section we show that the Williams’ heap building constant ω does
indeed exist (part (a) of Theorem 1.3), and give some results which will be
used later to establish bounds on ω. We shall build on the work of Bollobás
and Simon [BS] and Frieze [F], although our treatment here is self-contained.

We wish to investigate the behaviour of Williams’ algorithm when it
builds a heap on n random keys A[1], . . . , A[n] where each of the n! linear
orders on these n keys is equally likely. There are (at least) two natural ways
to model the input distribution for the purposes of average case analysis.
One is to assume that the set of keys is {1, . . . , n} and that each of the n!
possible input permutations is equally likely. Another is to assume that the
keys are n independent random variables, each uniformly distributed on the
interval [0,1]. Since the only operations performed on keys are comparisons,
both models are valid. The former model is used by Bollobás and Simon
[BS]; Frieze [F] found that some arguments are shorter if the latter model is
used. This is the case here as well, and so we use the ’independent uniform’
model.

Thus, following [F] we suppose that our array A[1], . . . , A[n] is the initial
segment of an infinite array, and assume that the initial contents form a
sequence of independent random variables each uniformly distributed on
[0,1]. The array A corresponds to a binary tree T where node 1 is the root,
node i has children 2i and 2i + 1, and the contents of node i is A[i]. The

4 HAYWARD AND MCDIARMID

level Lk consists of all nodes t with 2k ≤ t < 2k+1.

The following is our key observation. Say that arrays A[1], . . . , A[n] and
B[1], . . . , B[n] have property m, where 1 ≤ m ≤ n, if

A[1], . . . , A[m] and B[1], . . . , B[m] are heaps,

A[i] ≥ B[i] for 1 ≤ i ≤ m, and

A[i] = B[i] for m + 1 ≤ i ≤ n.

Observation 2.1 Suppose that property m holds, and that key m + 1 is
bubbled up in each array. Then property (m + 1) holds, and if a tree link is
traversed with array B then this also happens with array A.

Lemma 2.2 Let A[1], . . . , A[n] be an array with corresponding binary tree
T , and let T ′ be a subtree of T . Let (A[i] : i ∈ T ′) record the contents of the
nodes i in T ′ as we apply Williams’ algorithm to T , and let (A′[i] : i ∈ T ′)
record these values as we work with T ′ on its own. Then

(a) for each node i ∈ T ′, the number of swaps when i is bubbled up in
T ′ is at most the number of swaps in T ′ when i is bubbled up in T ;

(b) after each bubble up, A[i] ≥ A′[i] for each i ∈ T ′.

Proof Bubble up all nodes i < v, where v is the root of the subtree T ′.
Then let B[i] = 0 for i < v and B[i] = A[i] for i ≥ v. Now use Observation
(2.1). For each node i in T ′,

the number of swaps when i is bubbled up in T ′

= the number of swaps when i is bubbled up with array B
≤ the number of swaps in T ′ when i is bubbled up with array A
= the number of swaps in T ′ when i is bubbled up in T .

Also, for each node i in T ′, A′[i] = B[i] ≤ A[i]. 2

Now we need some notation (rather a lot!).

Our interest is in the number X(t) of swaps when node t is bubbled up.
For each node t in level Lk (k > 0) let IP (t) = {⌊t/2j⌋ : j = 1, . . . , k} be
the set of nodes on the insertion path from node t to the root. Thus X(t)
is the number of nodes i in IP (t) such that A[t] < A[i] when t is about to
be bubbled up.

It is convenient to introduce an upper bound for X(t). Let Y (t) be the
number of nodes i in IP (t) such that A[t] < A[i] at the stage when we are
about to start bubbling up (the first node on) level Lk. Thus X(t) ≤ Y (t).

AVERAGE CASE FOR HEAP BUILDING 5

Both Bollobás and Simon [BS] and Frieze [F] work with Y (t) rather than
X(t).

Let Xk =
∑

t∈Lk
X(t) be the total number of swaps when all the nodes

in level Lk are bubbled up, and let xk = 2−kE[Xk] be the corresponding
average expected value. Similarly, let Yk =

∑
t∈Lk

Y (t) and yk = 2−kE[Yk].
Next consider the values A[t] at the time when we have just bubbled up

(the last node on) level Lk. Let Aj,k denote the sum of these values over
all nodes t in Lj , and let aj,k = 2−jE[Aj,k] be their average expected value.

Finally, let Bj,k =
∑j

i=0 Ai,k.

Lemma 2.3

(a) 2−kE[Yk|A[j], j = 1, . . . , 2k − 1] =
k−1∑

j=0

2−jAj,k−1 ,

where A[j] is the contents of node j just before bubbling up the first node
on level Lk.

(b) yk =
k−1∑

j=0

aj,k−1

= 2−(k−1)E[Bk−1,k−1] +
k−2∑

j=0

2−(j+1)E[Bj,k−1] .

Proof (a) With A[j] as above, for each node t in Lk

E[Y (t)|A[j], j = 1, . . . , 2k − 1]

=
∑

i∈IP (t)

Prob{A[t] < A[i]|A[j], 1 ≤ j ≤ 2k − 1}

=
∑

i∈IP (t)

A[i].

Hence

E[Yk|A[j], j = 1, . . . , 2k − 1]

=
∑

t∈Lk

∑

i∈IP (t)

A[i]

=
k−1∑

j=0

2k−jAj,k−1 ,

6 HAYWARD AND MCDIARMID

which gives part (a).
(b) Remove the conditioning in part (a) to obtain

yk =
k−1∑

j=0

2−jE[Aj,k−1] =
k−1∑

j=0

aj,k−1

= E[B0,k−1] +
k−1∑

j=1

2−j(E[Bj,k−1]−E[Bj−1,k−1])

=
k−2∑

j=0

(2−j − 2−(j+1))E[Bj,k−1] + 2−(k−1)E[Bk−1,k−1]

=
k−2∑

j=0

2−(j+1)E[Bj,k−1] + 2−(k−1)E[Bk−1,k−1] . 2

Note that E[Bk,k] = 2k− 1/2. We now give an upper bound for E[Bj,k].

Lemma 2.4 (a) For 0 < j < k,

Bj,k ≤ Bj−1,k−1 +
∑

t∈Lj

Vt ,

where Vt is the minimum value of the initial contents A[s] over all 2k−j

descendant nodes s in Lk of node t.
(b) For 0 ≤ j < k,

E[Bj,k] ≤
2j+1 − 1

2k−j + 1
.

Proof (a) If we cut the tree above Lj before bubbling up Lk then Bj,k

would be no larger, since any movement across the cut would decrease the
sum of the values in the top levels. Thus

Bj,k ≤ ’Bj,k with cut’

= Bj−1,k−1 +
∑

t∈Lj

min(A[t], Vt) ,

where A[t] is the contents of node t when we are about to bubble up Lk.

(b) By part (a),

E[Bj,k] ≤ E[Bj−1,k−1] + 2j/(2k−j + 1) .

AVERAGE CASE FOR HEAP BUILDING 7

Thus

E[Bj,k] ≤ E[B0,k−j]+
j∑

i=1

2i/(2k−j+1) ≤ (2j+1−1)/(2k−j+1) . 2

Lemma 2.5 For all k, yk < 1 + φ, where φ =
∑

i≥1

1/(2i + 1) ≈ 0.7645 .

Proof By Lemmas 2.3(b) and 2.4(b),

yk ≤ 2−(k−1) 1

2
(2k − 1) +

k−2∑

j=0

2−(j+1) 2j+1 − 1

2k−1−j + 1
< 1 + φ. 2

The preceding lemma is essentially the upper bound of [BS],[F] in (1.1).

Lemma 2.6 xk > xk−1 + 2−k ln 2 for k ≥ 1.

Proof When bubbling up the nodes in Lk, the expected number of swaps

along the two links incident with the root is
∑2k+1−1

j=2k 1/j > ln 2. The ex-

pected number of swaps along all other links is at least 2E[Xk−1] by Lemma
2.2. Thus E[Xk] > 2E[Xk−1] + ln 2, and the lemma follows. 2

Now x0 = 0, x1, x2, . . . increase (strictly). But by Lemma 2.5 they are
bounded above by (1 +φ), so there exists a constant ω such that xk → ω as
k →∞.

Define Sk =
∑k

j=0 Xj to be the total number of swaps for the levels up

to k, and let sk = E[Sk]/(2k+1 − 1). Note that s0 = 0 and for k ≥ 1,

sk = sk−1
2k − 1

2k+1 − 1
+ xk

2k

2k+1 − 1
.

It follows that sk < xk for k ≥ 1, that the sk increase (strictly) with k, and
that sk → ω as k →∞.

So far we have shown that part (a) of Theorem 1.3 holds for perfect
heaps. Now let Wn =

∑n
t=1 X(t) (in particular, W2k+1−1 = Sk).

Lemma 2.7 E[Wn]/n→ ω as n→∞.

8 HAYWARD AND MCDIARMID

Proof Let 0 < ε < ω. Choose k0 such that ω− ε < sk0
(< ω) and thus also

ω − ε < xk0
< ω. Let k = ⌊log2(n + 1)⌋ − 1, so that Lk is the last complete

level. Let n be sufficiently large that k ≥ k0. We shall show that

(ω − ε)(n− 2k0) < E[Wn] < (ω + ε)(n + 2k0),

which will establish the lemma.
If n = 2k+1−1 then E[Wn] = nsk and we are done, since ω−ε < sk < ω.

So we may assume that n ≥ 2k+1. Consider the leaves in level Lk+1 and
their ancestors in level Lk+1−k0

. Let m = ⌊(n−(2k+1−1))/2k0⌋. By Lemma
2.2

E[
n∑

t=2k+1

X(t)] ≥ E[
2k+1−1+m2k0∑

t=2k+1

X(t)] ≥ m2k0xk0
, and so

E[Wn] = E[Sk] + E[
n∑

t=2k+1

X(t)]

≥ (2k+1 − 1)sk + m2k0xk0

≥ (ω − ε)(2k+1 − 1 + m2k0)

≥ (ω − ε)(n− (2k0 − 1))

as required.
We obtain an upper bound on E[Wn] similarly. Now let m = ⌊(2k+2 −

1− n)/2k0⌋. Then

E[Wn] = E[Sk+1]− E[
2k+2−1∑

t=n+1

X(t)]

≤ (2k+2 − 1)sk+1 −m2k0xk0

≤ (ω + ε)(n + 2k0 − 1). 2

We have now completed part (a) of the proof of Theorem 1.3. We next
present results that will be needed to prove the rest of the theorem.

Lemma 2.8 For each fixed j ≥ 0, ak−j,k increases to a limit αj as k →∞,

where
∑

j≥0

2−jαj = 1.

Proof By Lemma 2.2, if k ≤ k′ then ak−j,k ≤ ak′−j,k′ . Thus ak−j,k increases
to a limit αj (≤ 1) as k →∞. Further,

k∑

j=0

2−jak−j,k = 2−kE[
k∑

j=0

Ak−j,k] = 1− 2−k−1

AVERAGE CASE FOR HEAP BUILDING 9

and it follows easily that
∑

j≥0 2−jαj = 1. 2

From Lemma 2.3(b) and the above lemma the yk increase (strictly) with
k. But we saw in Lemma (2.5) that they are bounded above. Hence yk tends
to the limit α =

∑
j≥0 αj as k → ∞. Indeed, we may argue as in Lemma

2.6 that
E[Yk] ≥ 2E[Yk−1] + |Lk|2

−k = 2E[Yk−1] + 1,

and so yk ≥ yk−1 + 2−k.

Finally, in this section we consider ‘blocking’. Let s and t be nodes in
Lk with s < t, and let v be their nearest common ancestor. When node
s is bubbled up, the number of nodes i on the insertion path IP (t) with
A[i] > A[t] stays the same if A[s] > A[t] or A[t] > A[v], and decreases by 1
if A[s] < A[t] < A[v]. Let us then say that s blocks t if, when s is about to
be bubbled up we have A[s] < A[t] < A[v]. Set Z(s, t) = 1 if s blocks t and
Z(s, t) = 0 otherwise. Observe that for each t ∈ Lk,

X(t) = Y (t)−
∑
{Z(s, t) : s ∈ Lk, s < t}.

Hence Xk = Yk − Zk, where Zk =
∑
{Z(s, t) : s, t ∈ Lk, s < t}.

Let 0 ≤ j ≤ k. We wish to compare Zk with the corresponding quantity,
which we call Z ′

k, obtained by cutting the tree above level Lk−j . By Lemma
2.2(b), if s blocks t in the cut tree then this also happens in the original
tree. Hence always Zk ≥ Z ′

k. But Z ′
k is the sum of 2k−j independent random

variables each distributed like Zj . Thus in particular, E[Zk] ≥ 2E[Zk−1] and
so the quantities zk = 2−kE[Zk] are non-decreasing. But zk ≤ yk ≤ α and
so zk tends to some limit β as k →∞.

We can in fact prove that the zk increase strictly, in the spirit of Lemma
2.6 (though this yields only a small improvement in our estimates).

Lemma 2.9 zk ≥ zk−1 + 2−k(1/6).

Proof Denote the left half of the nodes in Lk by L and the right half by
R. Thus L = {2k, . . . , 2k + 2k−1 − 1} and R = {2k + 2k−1, . . . , 2k+1 − 1}.
Let T =

⋃k−1
j=0 Lj . Let

ZL =
∑
{Z(s, t) : s, t ∈ L, s < t}

ZR =
∑
{Z(s, t) : s, t ∈ R, s < t}

ZL,R =
∑
{Z(s, t) : s ∈ L, t ∈ R}

Thus Zk = ZL + ZR + ZL,R.

10 HAYWARD AND MCDIARMID

Then arguing as above, both E[ZL] and E[ZR] are at least E[Zk−1].
Further

E[ZL,R] =
∑

t∈R

Prob{Z(s, t) = 1 for some s ∈ L}.

Fix a node t in R. Then Prob{Z(s, t) = 1 for some s ∈ L}

= Prob {min
s∈L

A[s] < A[t] < min
x∈T

A[x]}

= Prob {min
s∈L

A[s] < min
x∈T∪{t}

A[x] and A[t] < min
x∈T

A[x]}

= Prob {min
s∈L

A[s] < min
x∈T∪{t}

A[x]} Prob {A[t] < min
x∈T

A[x]}

=
|L|

|L|+ |T |+ 1
×

1

|T |+ 1
=

1

3 · 2k
.

Hence E[ZL,R] = 1/6 and we are done. 2

3 An algorithm for computing E[Wn]

Recall that E[Wn] is the expected number of swaps performed by Williams’
algorithm in the construction of a heap with n keys. It is trivial to compute
E[Wn] by considering all n! possible linear orderings of the input keys. In
this section we present an algorithm to compute E[Wn] in O(n3) time and
O(n2) space.

We wish to compute E[Wn] as a function of E[Wn−1]. To that end, we
introduce some notation. The rank of a number x in a set of numbers is
its placement in the ordered set; thus the smallest number has rank 1, the
next smallest rank 2, etc. Let An[i] be the rank of A[i] among A[1, . . . , n]
after exactly n keys have been inserted. For 1 ≤ i, j ≤ n, define P (n, i, j)
as Prob{An[i] = j}, i.e. the probability that after exactly n keys have been
inserted, the key currently in node i is the jth smallest of the n keys. For
example, P (n, 1, 1) = 1 for n ≥ 1, since A[1, . . . , n] forms a heap. Finally,
define I(n) as the expected number of swaps to insert the nth key, that is
I(n) = E[X(n)]. Clearly,

E[Wn] = E[Wn−1] + I(n) .

The main result of this section is that given P (n − 1 · ·) it is possible to
compute both P (n · ·) and I(n).

We first show how to compute I(n) from P (n− 1 · ·). Recall that the in-
sertion path IP (t) from node t is the set of nodes {⌊t/2j⌋ : j = 1, . . . , ⌊lg t⌋}.

AVERAGE CASE FOR HEAP BUILDING 11

Define the extended insertion path IP+(t) as IP (t) ∪ {t}. Let R(n) denote
the (initial) rank of the nth key among the first n keys. Observe that during
the insertion of some key with R(n) = k, a swap takes place at node i of
the insertion path if and only if k ≤ An−1[i]. Assuming that An−1[i] = j, a
swap will occur at node i if and only if R(n) ≤ j. Thus

I(n) =
1

n

∑

i∈IP (n)

n−1∑

j=1

j P (n− 1, i, j) .

We now show how to compute P (n · ·) from P (n−1 · ·). We organize the
terms that contribute to P (n · ·) according to the nth key inserted. Define
P (n, i, j, k) as Prob{An[i] = j |R(n) = k}. Observe that

P (n, i, j) =
1

n

n∑

k=1

P (n, i, j, k) .

Note that if R(n) = k, then the ranks of all keys that had rank k or
greater before insertion are incremented by one. Thus, for a node i not on

IP+(n),

P (n, i, j, k) =





P (n− 1, i, j − 1) if k < j
0 if k = j
P (n− 1, i, j) if k > j

and so

n · P (n, i, j) = (j − 1)P (n− 1, i, j − 1) + (n− j)P (n− 1, i, j) .

Here and for the rest of this section, array indices are understood to be
integers; any fraction x/y used an array index is actually ⌊x/y⌋.

Define E(n, i, k) as the probability a key with R(n) = k ends at node i
when inserted. Obviously, E(n, i, k) = 0 if node i is not on IP+(n). If i is
on IP+(n), then the key stops at node i if and only if An−1[i/2] < k and
An−1[i] ≥ k. Thus

E(n, i, k) = Prob{An−1[i/2] < k and An−1[i] ≥ k}

= Prob{An−1[i/2] < k} − Prob{An−1[i/2] < k and An−1[i] < k} .

Since the contents of A[1, . . . , n− 1] form a heap before insertion of the
nth key, An−1[i/2] < An−1[i]. Thus both An−1[i/2] < k and An−1[i] < k if

12 HAYWARD AND MCDIARMID

and only if An−1[i] < k. It follows that

E(n, i, k) = Prob{An−1[i/2] < k} − Prob{An−1[i] < k}

=
∑

t<k

P (n− 1, i/2, t)−
∑

t<k

P (n− 1, i, t)

=
k−1∑

t=1

(P (n− 1, i/2, t)− P (n− 1, i, t)) .

Thus for a node i on IP+(n),

P (n, i, j, k) =





P (n− 1, i/2, j − 1) if k < j
E(n, i, k) if k = j
P (n− 1, i, j) if k > j

and so

n·P (n, i, j) = (j−1)P (n−1, i/2, j−1) + (n−j)P (n−1, i, j) + E(n, i, j) .

We use the above recurrences to compute E[Wn]. For each node i not on
IP+(n), the n values P (n, i, ·) can be computed in O(n) time (arithmetic
operations); for i on IP+(n), these values can also be computed in O(n)
time, by saving the value of E(n, i, k − 1) for the computation of E(n, i, k).
Thus E[Wn] can be computed in O(n3) time, using O(n2) space. Finally,
by storing the probability arrays P (n, i, ·) only for nodes i on IP+(n), it is
possible to compute E[Wn] in only O(n lg n) space but O(n3 lg n) time.

To conclude the section, we point out that just as there is a recurrence
relation involving the values P (n · ·), so there are recurrence relations
involving weighted sums of P (n · ·). Since only the value

∑
jP (n, i, j)

is needed in computing I(n), it is natural to ask if
∑

jP (n, i, j) can be
computed from

∑
jP (n − 1, i, j) and

∑
jP (n − 1, i/2, j) directly. Define

S(n, i, t) as
∑n

j=1

(j
t

)
P (n, i, j). Straightforward algebraic manipulation, and

a little perseverence, yield the following results.

For a node i not on IP+(n),

n · S(n, i, t) = (
t− 1

n
)S(n− 1, i, t− 1) + (1 +

t

n
)S(n− 1, i, t) ,

and for a node i on IP+(n),

n · S(n, i, t) = (t− 1)S(n− 1, i/2, t− 1)

+ (2t− 1)S(n− 1, i/2, t) + t · S(n− 1, i/2, t + 1)

+

{ (n+1
t+1

)
if i = n

(n + 1− t)S(n− 1, i/2, t)− t · S(n− 1, i, t + 1) if i < n .

AVERAGE CASE FOR HEAP BUILDING 13

4 Bounds for Williams’ heaps construction con-

stant ω

In this section we establish the bounds on ω given in Theorem 1.3(b). A
lower bound for ω comes directly from Lemma 2.6. For any k,

ω > xk + ln 2
∑

j≥k+1

2−j = xk + 2−k ln 2

The value k = 11 gives the stated bound.

We obtain the upper bound for ω = α− β by giving an upper bound for
α and a lower bound for β. The lower bound for β is easy. From Lemma
2.3(b) and the values aj,10 in Appendix 2,

y11 =
10∑

j=0

aj,10 = 1.60 10 73 11 68 .

But by Lemma 2.9

β ≥ z11 + 2−11(1/6)

= y11 − x11 + 2−11(1/6) = 0.32 36 51 64 70 .

Establishing an upper bound for α requires several steps. Begin with
observing that by Lemma 2.3(b)

yk =
k−1∑

j=0

aj,k−1 = 1− 2−k + 2−k
k−1∑

j=1

2jE[Bk−1−j,k−1] .

We shall use two different upper bounds for the terms E[Bk−1−j,k−1] for
j ≥ 1. By Lemma 2.4 we have

2−kE[Bk−1−j,k−1] <
2−j − 2−k

2j + 1
<

1

2j(2j + 1)
for 1 ≤ j ≤ k − 1 .

Also, however, we have

2−kE[Bk−1−j,k−1] = 2−kE[Bk−1,k−1]− 2−k
j−1∑

i=0

E[Ak−1−i,k−1]

=
1

2
− 2−k−1 −

j−1∑

i=0

2−i−1ak−1−i,k−1 .

14 HAYWARD AND MCDIARMID

But by Lemma 2.8, ak−1−i,k−1 ≥ a11−i,11 once k ≥ 12. Hence, for
1 ≤ j ≤ 12

2−kE[Bk−1−j,k−1] <
1

2
−

j−1∑

i=0

2−i−1a11−i,11 , = bj say.

These bounds are displayed in Appendix 2. We use the latter bound for
the last few levels from the bottom and the former bound for the remaining
levels. Thus we have

yk < 1 +
5∑

j=1

2jbj +
k−1∑

j=6

1

2j + 1

< 1 + φ−
5∑

j=1

(
1

2j + 1
− 2jbj) .

Here

1 + φ = 1 +
∑

j≥1

1

2j + 1
= 1.76 44 99 78 ,

as in Lemma 2.5. Also

5∑

j=1

(
1

2j + 1
− 2jbj) = 0.14 13 75 69 36 .

Hence
α ≤ 1.62 31 24 08 67 .

We now have an upper bound on α and a lower bound on β and thus
obtain

ω = α− β ≤ 1.29 94 72 43 96 .

Finally, some comments on the accuracy of our bounds. We do not need
a lower bound on α, but it is interesting to see how close we are. Using
Lemma 2.3(b) we may calculate y12 from the table in Appendix 2. Then by
the comments following Lemma 2.8

α ≥ y12 + 2−12 = 1.60 39 01 46 05.

Also,

β = α− ω ≤ 1.62 31 25 08 67 − 1.29 94 72 43 96

= 0.34 52 82 78 60 .

Thus the ranges for ω, α, β are each about 0.02.

AVERAGE CASE FOR HEAP BUILDING 15

5 Probability bounds

In this section we shall prove part (c) of Theorem 1.3. We follow roughly
the route taken in section 2 for investigating E[Wn]. We show that Wn/n
is unlikely to be much below ω; that 2−kZk is unlikely to be much below β;
that 2−kYk is unlikely to be much above α; and thus finally that Wn/n is
unlikely to be much above ω.

We shall make repeated use of the following inequalities from Hoeffd-
ing [H], see also McDiarmid [M]. Let T1, T2, . . . , Tn be independent random
variables with 0 ≤ Ti ≤ 1 for each i. Let T = (1/n)

∑n
i=1 Ti, and E[T] = µ.

Then for any t > 0

Prob{ |T − µ| ≥ t} ≤ 2 exp(−2nt2) . (5.1)

Also, if 0 < ε ≤ 1 then

Prob{T ≥ (1 + ε)µ} ≤ exp(−ε2nµ/3) . (5.2)

Lemma 5.3 For any ε > 0 there exists δ > 0 such that
Prob{Wn/n < ω − ε} < exp(−δn) .

Proof Recall that sk = E[
∑k

j=0 Xj]/(2k+1− 1) and that sk tends to w as
k →∞. Choose k0 such that sk0

> ω − ε/2 . We may cover all but O(lg n)
nodes in a heap on n nodes with disjoint k0-heaps. Thus by Lemma 2.2
Wn is at least the sum Σn of n/(2k0+1 − 1) − O(lg n) independent random
variables, each distributed like Sk0

. Now 0 ≤ Sk0
≤ k02

k0+1 and

E[Sk0
] = (2k0+1 − 1)sk0

> (2k0+1 − 1)(ω − ε/2) .

So by inequality (5.1)

Prob{Wn/n < ω − ε}

≤ Prob{Σn/n < ω − ε}

≤ exp(−(1 + o(1))(ε2/2)n) .

2

Lemma 5.4 For any ε > 0 there exists δ > 0 such that
Prob{2−kZk ≤ β − ε} ≤ exp(−δ2k).

Proof Recall that Zk = Yk − Xk (so that Zk ≤ Yk ≤ k2k) and that
zk = 2−kE[Zk] → β as k → ∞. Choose k0 such that zk0

≥ β − ε/2. Then

16 HAYWARD AND MCDIARMID

the random variable Zk0
satisfies 0 ≤ Zk0

≤ k02
k0 and E[Z0] = 2k0zk0

. Also,
as we saw before Lemma 2.9, Zk is distributed at least as the sum of 2k−k0

independent copies of Zk0
. Hence by inequality (5.1)

Prob{2−kZk < β − ε}

≤ Prob{2−(k−k0)Zk < 2k0zk0
− 2k0−1ε}

≤ 2 · exp(2k−k0+1(ε/2k0)
2) .

2

Lemma 5.5 For any ε > 0, for each integer j ≥ 0, there exists δ > 0 such
that
Prob{| 2−(k−j)Ak−j,k − αj | > ε} < exp(−δ2k) .

Proof Let ε > 0 and j ≥ 0. Let k0 > j be such that ak0−j,k0
> αj − ε/2,

and consider k ≥ k0. By Lemma 2.2, Ak−j,k is in distribution at least the
sum of 2k−k0 independent copies of Ak0−j,k0

. Thus 2−(k−j)Ak−j,k is in dis-
tribution at least the average of 2k−k0 independent copies of 2−(k0−j)Ak0−j,k0

;
these random variables are bounded between 0 and 1, and have mean ak0−j,k0

>
αj − ε/2. Hence by inequality (5.1),

Prob{2−(k−j)Ak−j,k < αj − ε} < 2 exp(−2k−k0−1ε2) .

This gives us half of the lemma.
Again let ε > 0 and j ≥ 0. Now let k0 > j be such that

∑k0

i=0 2−iαi ≥
1 − ε2−j−2, and consider k ≥ k0. Suppose that 2−(k−j)Ak−j,k ≥ αj + ε. If
for each i = 0, . . . , k0 i 6= j we have

2−(k−i)Ak−i,k ≥ αi − ε2−j−2 ,

then

2−kBk,k ≥
k0∑

i=0

2−i 2−(k−i)Ak−i,k

≥
k0∑

i=0,i6=j

2−i(αi − ε2−j−2) + 2−j(αj + ε)

≥
k0∑

i=0

2−iαi + ε2−j−1

≥ 1 + ε2−j−2 .

AVERAGE CASE FOR HEAP BUILDING 17

Hence

Prob{2−(k−j)Ak−j,k ≥ αj + ε} ≤
k0∑

i=0,i6=j

Prob{2−(k−i)Ak−i,k < αi − ε2−j−2}

+ Prob{2−kBk,k ≥ 1 + ε2−j−2} .

Finally, we may use the half of the lemma already proved to handle the
sum above, and one further application of inequality (5.1) to handle the last
term. 2

Lemma 5.6 For any ε > 0, Prob{|2−kYk−α| > ε} = o(exp(−2k−1/k2(lg k)8)).

Proof Recall Lemma 2.3, and note that conditional on the values (A[i] :
i = 1, . . . , 2k − 1) at the time when we are about to bubble-up level Lk, the
random variables (Y (t) : t ∈ Lk) are independent. Let Ek and Fk be the
events

Ek = { | 2−kYk − α | > 2ε} , and

Fk = { |
k−1∑

j=0

2−jAj,k−1 − α | > ε} .

We shall use the inequality

Prob(Ek) ≤ Prob(Ek | F k) + Prob(Fk) .

Since each 0 ≤ Y (t) ≤ k, inequality (5.1) applied to the Y (t)/k yields

Prob(Ek | F k) ≤ 2 exp(−2k+1(ε/k)2) .

Hence to prove the lemma it will suffice to show that

Prob(Fk+1) = o(exp(−2k−1/k2(lg k)8)) . (5.7)

(It is tidier to replace k by k + 1.)

To do this we split the sum
∑k

j=0 2−jAj,k into parts. We shall choose a
suitably large integer constant k1 and set k2 = ⌊lg k + 3 lg lg k⌋; and write

k∑

j=0

2−jAj,k =
k−k2∑

j=0

+
k−k1∑

j=k−k2+1

+
k∑

j=k−k1+1

=
∑

1 +
∑

2 +
∑

3 .

18 HAYWARD AND MCDIARMID

(We are assuming that k is sufficiently large that k2 > k1.) We shall see
that the contributions from Σ1 and Σ2 are negligible. By Lemma 5.5, if the
constant k1 is sufficiently large that

∑k1−1
j=0 αj ≥ α − ε/4, then there exists

δ > 0 such that

Prob{ | Σ3 − α | > ε/3} < exp(−δ2k) . (5.8)

First let us dispose of the sum Σ1. In a heap with 2k+1 − 1 nodes the
contents A[t] of a node t in level Lj is at most the (j +1)st smallest element
originally in the path from the root to t together with the corresponding
subtree rooted at t, and this set contains 2k−j+1 + j − 1 ≥ 2k−j + j nodes.
Thus

Prob{A[t] ≥ δ} ≤

(
2k−j + j

j

)
(1− δ)2

k−j

≤ (2k−j + 1)j exp(−δ2k−j) .

Now if Aj,k ≥ δ2j+1 then A[t] ≥ δ for at least δ2j nodes t in Lj . Hence

Prob{Aj,k ≥ δ2j(k−j+1)} ≤ 22j

(2j(k−j+1) exp(−δ2k−j))δ2j

≤ exp(2j ln 2− δ22k−1)

as long as
δ2k−j ≥ 2j(k − j + 1) ln 2 . (5.9)

For 0 ≤ j ≤ k − 4 lg k take δ = ε/(12k). Then (5.9) holds (for k
sufficiently large). Hence

Prob{

⌊k−4 lg k⌋∑

j=0

2−jAj,k ≥ ε/6} < k exp(2k−4 lg k ln 2−δ22k−1) = o(exp(−
ε2

289

2k

k2
)).

For k − 4 lg k < j ≤ k − k2 take δ = ε/(48 lg k). Again (5.9) holds, and
so

Prob{
k−k2∑

j=⌈k−4 lg k⌉

2−jAj,k ≥ ε/6} ≤ (4 lg k) exp(2k−lg k ln 2− δ22k−1)

= o(exp(−
ε2

4609

2k

(lg k)2
)) .

Hence

Prob{Σ1 ≥ ε/3} = o(exp(−
ε2

290

2k

k2
)) . (5.10)

AVERAGE CASE FOR HEAP BUILDING 19

It remains to dispose of the sum Σ2. In Lemma 2.4(a) the 2j random
variables Vt are independent, 0 ≤ Vt ≤ 1, and E[Vt] = 1/(2k−j + 1). Hence
by inequality (5.2)

Prob{2−j
∑

t∈Lj

Vt > 2 · 2−(k−j)} < exp(−2j2−(k−j)/3)

and so
Prob{Bj,k −Bj−1,k−1 > 22j−k+1} < exp(−22j−k−2) .

Thus also

Prob{Bj−i,k−i −Bj−i−1,k−i−1 > 22j−k−i+1} < exp(−22j−k−i−2) .

Hence

Prob{Bj,k −Bj−s,k−s > 22j−k+2} < s exp(−22j−k−s−2) .

Now let s = ⌊2 lg lg k⌋. Then for j ≥ k − k2 + 1,

2j − k − s− 2 ≥ k − 2k2 − s

≥ k − 2 lg k − 8 lg lg k .

Also of course Bj−s,k−s ≤ 2j−s+1 − 1. Hence for j ≥ k − k2 + 1,

Prob{2−jBj,k > 2j−k+2 + 2−s+1} ≤ (2 lg lg k) exp(−
2k

k2(lg k)8
) .

Now Σ2 ≤
∑k−k1

j=k−k2+1 2−jBj,k, so

Prob{Σ2 > 2−k1+3 + (k2 − k1)2
−s+1} ≤ (k2 − k1)(2 lg lg k) exp(−

2k

k2(lg k)8
) .

But 2−k1+3 ≤ ε/4 (if we choose k1 large enough) and (k2− k1)2
−s+1 = o(1).

So

Prob{Σ2 ≥ ε/3} = o(exp(−
2k−1

k2(lg k)8
)) .

This last inequality together with (5.8) and (5.10) yields (5.7). This com-
pletes the proof of Lemma 5.6. 2

We can now handle perfect heaps. We are almost home.

20 HAYWARD AND MCDIARMID

Lemma 5.11 For any ε > 0, Prob{Sk ≥ (ω+ε)(2k+1−1)} = o(exp(−2k/k3(lg k)9).

Proof Lemmas 5.4 and 5.6 show that

Prob{Xk ≥ (ω + ε)2k} = o(exp(−2k−1/k2(lg k)8) .

Let n = 2k+1 − 1. The first εn/2k nodes t can contribute at most εn/2 to
Sk. Let k0 = ⌊lg(εn/2k)⌋ = k − lg k + O(1). Then

Prob{Sk ≥ (ω + ε)n}

≤ Prob{
k∑

j=k0

Xj ≥ (ω + ε/2)
k∑

j=k0

2j}

= o((k − k0 + 1) exp(−
2k0−1

k2(lg k)8
))

= o(exp(−
2k

k3(lg k)9
)) .

2

Lemma 5.12 For any ε > 0, Prob{Wn ≥ (ω + ε)n} = o(exp(−n/(lg n)4)).

Proof Let 2k+1 ≤ n ≤ 2k+2− 1. Now if Wn ≥ (ω +2ε)n and Sk+1−Wn ≥
(2k+2 − 1− n)ω − nε then Sk+1 ≥ (2k+2 − 1)(ω + ε/2). Hence

Prob{Wn ≥ (ω + ε)n} ≤ Prob{Sk+1 ≥ (2k+2 − 1)(ω + ε/2) }

+ Prob{Sk+1 −Wn < (2k+2 − 1− n)ω − nε} .

By Lemma 5.11 the former term on the right hand side is o(exp(−n/(lg n)4)).
We may handle the latter term much as in the proof of Lemma 5.3, and we
find that for some δ > 0 this term is o(exp(−δn)). 2

Lemmas 5.3 and 5.12 combine to complete the proof of Theorem 1.3.

6 Repeated insertion into equi-probable heaps

In this section, we consider the simplified approximation of the average case
behaviour of Williams’ heap construction in which we repeatedly insert a
uniform random key into a uniform random heap. Thus we are assuming as
in Porter and Simon [PS] that

each possible heap of the first n− 1 keys is equally likely, and
each possible rank of the nth key is equally likely.

AVERAGE CASE FOR HEAP BUILDING 21

We refer to this as the ’equi-probable’ model.
Our interest is to see whether results obtained here are similar to those

obtained earlier, since one may be tempted to conduct a similar approxi-
mate analysis in more complicated situations, for example when considering
heapsort (see [C]).

Following our notation of the previous sections, we shall define X̃(t) as
the number of swaps or promotions to insert the tth key, W̃n as

∑n
t=1 X̃(t),

and Ĩ(n) as E[X̃(n)]. The main result of this section is the following.

Theorem 6.1

(a) There exists a constant ω̃ such that E[W̃n]→ ω̃ as n→∞ .
(b) 1.27057815 . . . < ω̃ < 1.27057824 . . .

(c) For any ε > 0, Prob(|W̃n/n− ω̃| > ε) = O(exp(−ε2n/ lg2 n)) .

Thus ω̃ = 1.270578 . . . and is strictly less than ω.

For a heap of size n, let g(n) be the size of the subheap that is obtained
by removing the root, and that contains node n. Note that for l = ⌊lg n⌋ ,

g(n) =

{
n− 2l−1 if n < 2l + 2l−1

n− 2l if n ≥ 2l + 2l−1 .

Porter and Simon [PS] observed that

Ĩ(n) =
⌊lg n⌋

n
+

n− 1

n
Ĩ(g(n)) . (6.2)

The proof of parts (a) and (b) of the theorem will follow routinely from
(6.2). The proof of part (c) will then follow from Hoeffding’s inequality
(5.1).

Proof Continuing to mimic previous notation, we define x̃k as the aver-

age of the expected insertion costs along the kth level Lk, namely
∑2k+1−1

t=2k Ĩ(t)/2k.

For a node t on level Lk, note that k = ⌊lg t⌋ and that g(t + 2k) = t and
g(t + 2k+1) = t. Thus for t > 1,

Ĩ(t + 2k) + Ĩ(t + 2k+1) =
k + 1

t + 2k
+ (1−

1

t + 2k
)Ĩ(t)

+
k + 1

t + 2k+1
+ (1−

1

t + 2k+1
)Ĩ(t)

= 2Ĩ(t) + (
1

t + 2k
+

1

t + 2k+1
)(k + 1− Ĩ(t)) .

22 HAYWARD AND MCDIARMID

Thus the above yields, for all k ≥ 1

Ĩ(t + 2k) + Ĩ(t + 2k+1) > 2Ĩ(t) ,

and so

x̃k+1 > x̃k .

(See also Lemma 2.6.)

We now establish an upper bound on x̃k+1.

x̃k+1 = 2−(k+1)
∑

t∈Lk+1

Ĩ(t)

= 2−(k+1)
∑

t∈Lk

(2Ĩ(t) + (
1

t + 2k
+

1

t + 2k+1
)(k + 1− Ĩ(t)))

< 2−(k+1)
∑

t∈Lk

(2Ĩ(t) + (
1

2k + 2k
+

1

2k + 2k+1
)(k + 1− Ĩ(t)))

= 2−(k+1)
∑

t∈Lk

(2Ĩ(t) +
5

3

1

2k+1
(k + 1− Ĩ(t)))

= 2−k
∑

t∈Lk

(Ĩ(t) +
5

6

1

2k+1
(k + 1− Ĩ(t)))

= x̃k +
5

6

1

2k+1
(k + 1− x̃k)

< x̃k +
5

6

k + 1

2k+1
.

Hence, for all j ≥ 1

x̃k+j < x̃k +
5

6

∑

i≥k+1

i

2i
= x̃k +

5

6

k + 2

2k
.

Thus x̃k → a limit ω̃ as k → ∞, and for any k, x̃k < ω̃ < x̃k + 5
6

k+2
2k .

We may now show much as in Section 2 that also E[W̃n]/n→ ω̃ as n→∞.
This completes our proof of part (a) of the theorem. We take k = 28 (see
Appendix 2) in the last inequality to obtain an error bound of 9.313 . . . ×
10−8, which gives part (b). Finally, part (c) follows from part (a) and
Hoeffding’s inequality (5.1) on noting that W̃n is the sum of n independent
random variables bounded between 0 and ⌊lg n⌋. 2

AVERAGE CASE FOR HEAP BUILDING 23

7 Concluding remarks

We have described fairly precisely the average case behaviour of Williams’
method of constructing a heap by repeated insertion. This complements
recent work on the average case analysis of variants of Floyd’s method, as
mentioned in the introduction. We have also shown that the ’equiprobable’
approximation slightly underestimates the number of comparisons required.

The most interesting related open problem is the average case analysis
of heapsort (with any of its trickledown variants). While some empirical
data (e.g. see [K]) and partial theoretical results (e.g. [C]) are known, the
problem of determining average numbers of comparisons is open. A crucial
component of our work was the development of an algorithm to compute
E[Wn] exactly, in time polynomial in n. Is there such an algorithm for
heapsort?

Appendix 1
The following is the code for Williams’ method of heap construction.

1. begin
2. A[0]← −∞
3. for t← 1 to n do
4. begin
5. p← t; q ← ⌊t/2⌋; a← A[t]
6. while A[q] > a do
7. begin
8. A[p]← A[q]; p← q; q ← ⌊p/2⌋
9. endwhile
10. A[p]← a
11. endfor
12. end

We estimate the efficiency of this method by counting the number of
’swaps’ or ’promotions’, that is, the number of executions of line 8.

24 HAYWARD AND MCDIARMID

Appendix 2
In this appendix we present all numerical tables of this paper.
The first table is used in estimating the error bound for ω. Next are

the arrays P (2 · ·) through P (9 · ·). The following series of tables shows the
average expected values of the levels of a heap built by Williams’ algorithm,
for perfect heaps of sizes 3 to 4095. Following this is a table showing the
values of I(n), E[Wn], and E[Wn]/n, for n up to 32. Next is a table showing
the average insertion cost along the bottom level of a heap, for up to 11
levels. (We label levels starting at zero, so a perfect heap with k levels has
2k+1−1 keys.) Finally, the last table shows the average insertion cost along
the bottom level of a heap in the equi-probable case, for up to 28 levels. As
usual, the cost is defined as the number of swaps involved in insertion, or
the number of levels the inserted key rises.

Upper bound for α (and ω)

j aj,11 bj
1

2j(1+2j)
1

2j+1
− 2jbj

∑j
k=1

1
2k+1

− 2kbk

1 0.000737042 0.143790058 0.166666667 0.045753217 0.045753217
2 0.001724620 0.038869985 0.050000000 0.044520060 0.090273277
3 0.003698584 0.010199395 0.013888889 0.029515951 0.119789228
4 0.007637566 0.002687947 0.003676471 0.015816382 0.135605609
5 0.015477817 0.000766655 0.000946970 0.005770084 0.141375694
6 0.031008133 0.000282152 0.000240385 -0.002673143 0.138702550
7 0.061481349 0.000161232 0.000060562 -0.012885763 0.125816788
8 0.120183174 0.000131398 0.000015199 -0.029746785 0.096070002
9 0.229364719 0.000124174 0.000003807 -0.061627770 0.034442232

10 0.419680294 0.000122490 0.000000953 -0.124453946 -0.090011714
11 0.712419883 0.000122130 0.000000238 -0.249634027 -0.339645741

AVERAGE CASE FOR HEAP BUILDING 25

Note that each of the following
arrays has been multiplied by the low-
est common denominator of the en-
tries of P (k · ·).

P(2 · ·)

1 0
0 1

3 × P(3 · ·)

3 0 0
0 1 2
0 2 1

12 × P(4 · ·)

12 0 0 0
0 8 4 0
0 4 5 3
0 0 3 9

10 × P(5 · ·)

10 0 0 0 0
0 8 2 0 0
0 2 3 3 2
0 0 1 3 6
0 0 4 4 2

60 × P(6 · ·)

60 0 0 0 0 0
0 32 22 6 0 0
0 28 17 11 4 0
0 0 3 9 18 30
0 0 12 20 18 10
0 0 6 14 20 20

105 × P(7 · ·)

105 0 0 0 0 0 0
0 40 38 21 6 0 0
0 65 25 12 3 0 0
0 0 3 9 18 30 45
0 0 12 24 29 25 15
0 0 6 15 24 30 30
0 0 21 24 25 20 15

280 × P(8 · ·)

280 0 0 0 0 0 0 0
0 150 85 37 8 0 0 0
0 130 85 41 19 5 0 0
0 0 45 85 85 55 30 0
0 0 20 44 61 65 55 35
0 0 10 26 44 60 70 70
0 0 35 53 57 55 45 35
0 0 0 4 16 40 80 140

252 × P(9 · ·)

252 0 0 0 0 0 0 0 0
0 166 64 23 4 0 0 0 0
0 91 77 46 24 11 3 0 0
0 0 72 82 60 29 9 0 0
0 0 12 28 42 50 50 42 28
0 0 6 16 28 40 50 56 56
0 0 21 37 44 45 42 35 28
0 0 0 2 8 20 40 70 112
0 0 0 18 42 57 58 49 28

26 HAYWARD AND MCDIARMID

Heapsize 3

level avg. exp. val.

0 0.250000000000000
1 0.625000000000000

Heapsize 7

level avg. exp. val.

0 0.125000000000000
1 0.342857142857143
2 0.672321428571429

Heapsize 15

level avg. exp. val.

0 0.062500000000000
1 0.179671717171717
2 0.383151917526918
3 0.693193611943612

Heapsize 31

level avg. exp. val.

0 0.031250000000000
1 0.092036756202444
2 0.205202826266408
3 0.401927398975604
4 0.703027874420290

Heapsize 63

level avg. exp. val.

0 0.015625000000000
1 0.046590765391610
2 0.106369076035701
3 0.217526787467712
4 0.410983835577319
5 0.707805046752974

Heapsize 127

level avg. exp. val.

0 0.007812500000000
1 0.023441589014780
2 0.054181970537520
3 0.113423424377795
4 0.223577187727582
5 0.415428888603783
6 0.710159837591182

Heapsize 255

level avg. exp. val.

0 0.003906250000000
1 0.011757757874319
2 0.027348024319593
3 0.057956420289752
4 0.116921756155955
5 0.226573708524767
6 0.417630121961365
7 0.711328907795623

Heapsize 511

level avg. exp. val.

0 0.001953125000000
1 0.005888172762953
2 0.013739280576294
3 0.029300398623684
4 0.059838087466778
5 0.118663456645697
6 0.228064531195549
7 0.418725232269016
8 0.711911369058983

Heapsize 1023

level avg. exp. val.

0 0.000976562500000
1 0.002946416557569
2 0.006886086543310
3 0.014732191558490
4 0.030276321744398
5 0.060777472225995
6 0.119532371318582
7 0.228808004732981
8 0.419271356596720
9 0.712202079702404

AVERAGE CASE FOR HEAP BUILDING 27

Heapsize 2047

level avg. exp. val.

0 0.000488281250000
1 0.001473791668874
2 0.003447171171386
3 0.007386778859614
4 0.015229183889442
5 0.030764209351361
6 0.061246788441340
7 0.119966326431618
8 0.229179235491644
9 0.419544046167648

10 0.712347304112488

Heapsize 4095

level avg. exp. val.

0 0.000244140625000
1 0.000737041788102
2 0.001724619614611
3 0.003698583603685
4 0.007637565892550
5 0.015477816549026
6 0.031008133396531
7 0.061481349099988
8 0.120183173636321
9 0.229364718604341

10 0.419680293856555
11 0.712419883270046

n I(n) E[Wn] E[Wn]/n

1 0.0000000 0.0000000 0.0000000
2 0.5000000 0.5000000 0.2500000
3 0.3333333 0.8333334 0.2777778
4 0.9166667 1.7500000 0.4375000
5 0.6666666 2.4166665 0.4833333
6 0.7500000 3.1666665 0.5277777
7 0.5500000 3.7166665 0.5309523
8 1.2416667 4.9583330 0.6197916
9 0.9416666 5.8999996 0.6555555

10 0.9817460 6.8817458 0.6881746
11 0.7579365 7.6396823 0.6945166
12 1.1023810 8.7420635 0.7285053
13 0.8357143 9.5777779 0.7367522
14 0.8951160 10.4728937 0.7480639
15 0.6959890 11.1588831 0.7439255
16 1.4828825 12.6417656 0.7901103
17 1.1495489 13.7913141 0.8112538
18 1.1653610 14.9566755 0.8309264
19 0.9252817 15.8819571 0.8358925
20 1.2628822 17.1448402 0.8572420
21 0.9831204 18.1279602 0.8632362
22 1.0263020 19.1542625 0.8706483
23 0.8100463 19.9643097 0.8680134
24 1.3763847 21.3406944 0.8891956
25 1.0668609 22.4075546 0.8963022
26 1.0942856 23.5018406 0.9039170
27 0.8644515 24.3662930 0.9024553
28 1.2001898 25.5664825 0.9130887
29 0.9291582 26.4956398 0.9136428
30 0.9802674 27.4759064 0.9158636
31 0.7683119 28.2442188 0.9111038
32 1.6552805 29.8994999 0.9343594

28 HAYWARD AND MCDIARMID

Williams’ method

level avg. ins. cost

1 0.416666666666667
2 0.720833333333333
3 0.930277014652015
4 1.067833444615132
5 1.154694091234381
6 1.207784403311318
7 1.239375461326011
8 1.257765490960568
9 1.268280503126457

10 1.274205004756312
11 1.277502849956625

Equi-probable model

level avg. ins. cost

1 0.416666666666667
2 0.715773809523810
3 0.922005439583565
4 1.058011754862710
5 1.144213822513107
6 1.197044446680117
7 1.228537365336889
8 1.246890932073955
9 1.257392317674570

10 1.263311592215651
11 1.266607347265580
12 1.268423804437218
13 1.269416468895913
14 1.269955059486285
15 1.270245495030628
16 1.270401285930926
17 1.270484468754062
18 1.270528704068522
19 1.270552143734820
20 1.270564524587705
21 1.270571045528150
22 1.270574471256329
23 1.270576266749685
24 1.270577205810951
25 1.270577695999073
26 1.270577951421781
27 1.270578084297521
28 1.270578153318135

AVERAGE CASE FOR HEAP BUILDING 29

Acknowledgements

This paper grew out of a problem discussed by Alan Frieze at the Febru-
ary 1988 Bellairs Research Institute Workshop on Random Graphs and
Probabilistic Algorithms. We thank conference organizer Bruce Reed and
institute director Wayne Hunt for their efforts in making the workshop a
success.

The first author is also grateful to Alan Frieze, Mike Saks and Rafe
Wenger for various insightful observations and motivating comments, and
to Dan Arena, Magnus Halldorsson, Bob Webber, and Yi Zhu for their
assistance in implementing the algorithms.

References

[BS] B. Bollobás and I. Simon, Repeated random insertion into a priority
queue, Journal of Algorithms 6 (1985), 466-477.

[C] S. Carlsson, Average-case results on heapsort, BIT 27 (1987), 2-17.

[De] L. Devroye, private communication.

[Do] E.E. Doberkat, An average case analysis of Floyd’s algorithm to con-
struct heaps, Information and Control 61 (1984), 114-131.

[Fl] R.W. Floyd, Algorithm 245, Treesort, CACM 7 (1964), 701.

[Fr] A. Frieze, On the random construction of heaps, to appear in Journal
of Algorithms.

[H] W. Hoeffding, Probability inequalities for sums of bounded random
variables, J. Amer. Statist. Assoc. 58 (1963), 13-30.

[GM] G.H. Gonnet and J.I. Munro, Heaps on heaps, SIAM J. Computing
15 (1986), 964-971.

[K] D.E. Knuth, ”The Art of Computer Programming, Vol. 3, Sorting
and Searching”, Addison-Wesley, Reading, Mass. 1973.

[M] C.J.H. McDiarmid, On the method of bounded differences, in J.
Siemons, ed., ”Surveys in Combinatorics, 1989”, London Math. Soc.
Lecture Note Series 141, Cambridge University Press 1989.

[MR] C.J.H. McDiarmid and B. Reed, Building heaps fast, Journal of Al-
gorithms 10 (1989), 352-365.

30 HAYWARD AND MCDIARMID

[PS] T. Porter and I. Simon, Random insertion into a priority queue struc-
ture, IEEE Transactions on Software Engineering SE-1 (Sept. 1975),
292-298.

[W] J.W.J. Williams, Algorithm 232, CACM 7 (1964), 347-348.

