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Abstract

We give an ⌈n+1

6
⌉-cell handicap strategy for the game of Hex on an n×n board:

the first player is guaranteed victory if she is allowed to colour ⌈n+1

6
⌉ cells on her first

move. Our strategy exploits a new kind of inferior Hex cell.

1 Introduction

Hex was invented independently by Piet Hein in 1942 [9] and John Nash in 1948 [10]. The
game is played by two players, Black and White, on a board with hexagonal cells. The
players alternate turns, colouring any single uncoloured cell1 with their colour. The winner
is the player who creates a path of her colour connecting her two opposing board sides.
Figure 1 shows a 5×5 board at the start and end of a game won by White.

Figure 1: An empty 5×5 Hex board (left) and a completed game position (right).

Hein and Nash observed that Hex cannot end in a draw [9, 10]: exactly one player has a
winning path if all cells are coloured [1]. Also, an extra coloured cell is never disadvantageous
for the player with that colour [10]. For n×n boards, Nash showed the existence of a first-
player winning strategy [10]; however, his proof reveals nothing about the moves of such a
strategy. For 7×7 and smaller boards, computer search can find all winning first moves [7].
For 8×8 and 9×9 boards, Jing Yang found by human search that moving to the centre cell
is a winning first move [13].

∗This research gratefully supported by NSERC, Alberta Ingenuity Fund, and iCORE.
1Or by indicating cell ownership in some other way, e.g. by placing a coloured stone on the cell.
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For m×n boards with m6=n (hereafter irregular boards), the player whose opposing board
sides are closer together can win, even as the second player, via a pairing strategy due to
Claude Shannon [5]. Figure 2 shows this strategy for the 5×4 Hex board. By contrast,
Stefan Reisch showed that solving arbitrary n×n Hex positions is PSPACE-complete [11].
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Figure 2: Shannon’s pairing strategy on a 4×5 Hex board.

The problem of efficiently, say in polynomial time, identifying a winning first move on
an empty n×n Hex board has been unsolved for roughly 60 years. As a step towards solving
this problem we ask the following:

Starting from the n×n Hex board, what is the least number h(n) of cells the first

player needs to colour in order to reach a winning position with a known and

polytime strategy, and what should these initial cells be?

For n up to 9, explicit winning strategies are known for opening on the centre board cell.
Notice that h(n) ≥ 1, since the second player can win if the first player colours no cells.
Also, by colouring cells as in Figure 3, notice that h(n) ≤ n

2
; this can be improved slightly

by omitting cells closest to the sides. Before now, little else was known about h(n).

Figure 3: A winning Black handicap position.

In this paper, we show that h(n) ≤ ⌈n+1

6
⌉ for all positive n. Our strategy combines

Shannon’s (n− 1)×n pairing strategy with the exploitation of a new kind of inferior cell: we
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colour cells in the second row in a way that allows us to negate opponent moves to the first
row. The resulting ⌈n+1

6
⌉-cell handicap strategy is both explicit and efficient.

In §2 we review previous Hex inferior cell analysis, in §4 we introduce a new type of
inferior cell, and in §5 we present our handicap strategy.

2 Inferior Cell Analysis

Hex has a large branching factor, so it is important for players to find some partial order
indicating comparative cell value. If one cell is provably inferior to another, in the sense that
(a move to) the former loses if the latter loses, then the former can be replaced by the latter
on the list of moves to consider. At one end of this order are cells that are provably useless.

Following observations of Beck et al. [1] and Schensted and Titus [12], Hayward and Jack
van Rijswijck defined one form of useless cell: with respect to a particular Hex position, a
cell c (coloured or not) is live if there is some completion of the position (namely, a colouring
of all uncoloured cells) in which changing c’s colour changes the winner in the completion; a
cell is dead if it is not live [8]. See Figure 4.

Figure 4: A live cell (left). In the completion (middle), changing the cell’s colour (right)
changes the winner.

Any move to a dead cell is useless, since there is no completion in which the cell’s colour
matters. It follows that a dead cell can be assigned an arbitrary colour (uncoloured, black,
white) without changing the position’s winner.2

Live cells can be identified by considering connecting sets [8]. In a Hex position, a
connector for a player is a set of uncoloured cells that when coloured connects the player’s
two opposing board sides. An uncoloured cell is live if it is on some minimal connector;
otherwise it is dead. A coloured cell is live if it is live in the position obtained by uncolouring
the cell; otherwise it is dead. See Figure 5.

Some dead cells can be recognized by matching a pattern of neighbouring cells. For
example, for each pattern of Figure 6, the uncoloured cell is dead [7]. By using only these
five patterns and by representing each side of the board as a row of coloured cells, one can
identify all the dead cells in Figure 5. Just as moves to dead cells are useless, so are cells to
moves which can be immediately killed. A cell c is vulnerable for player P if her opponent P

2More generally, this holds for any set of uncoloured dead cells, and for any single coloured dead cell.

However, it does not always hold for a larger set of coloured dead cells, since changing the colour of one such

cell might cause other dead cells of the same colour to become live.
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Figure 5: A minimal Black connector (left, dotted), all live/dead cells (middle, dot-
ted/shaded), and an equivalent state (right) obtained by arbitrarily colouring dead cells.

Figure 6: Dead patterns.

has a reply that makes c dead; this reply is c’s killer. For example, in each pattern in Figure
7, the dotted cell is White-vulnerable to the shaded cell.

Figure 7: White-vulnerable patterns.

A set S of cells is captured by P if she has a second-player strategy to make all cells in S

dead or her colour. We may assume that each player P follows a capturing strategy for each
of their captured sets, so P -colouring the cells of a P -captured set does not alter a position’s
winner. See Figure 8.

With respect to a partition U1, U2 of the cells of a position B, for each j = 1, 2, let αj be
a player P 2nd-player strategy for a game continuation in which each player is restricted to
colouring cells of Uj . Then α1 ⊕ α2 is P ’s 2nd-player strategy for B defined by combining
α1 and α2 in the obvious way:

For each j = 1, 2, in response to the P -colouring of a cell of Uj , find the state in
αj defined by the P -coloured cells of Uj and colour the cell specified by αj ; if the
specified cell is already P -coloured or if no cell is specified (for example if P has
just coloured the last uncoloured cell in Uj) and if there is some uncoloured cell,
then colour any uncoloured cell.

Notice that this sum operator⊕ is essentially the combinatorial game theory sum operator
modified so that a player never passes. For a player P and set of cells C of a position B, let
B + P (C) be the state obtained from B by P -colouring all cells of C.
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Figure 8: Black-captured patterns (left). Black-colouring a Black-captured set does not alter
the winner (right).

Theorem 1. Let U be the uncoloured cells of a position B such that a proper subset of C of

U is captured by P . Further let α1 be a P -winning 2nd-player for B + P (C) and let α2 be a

P -capturing strategy for C. Then α1 ⊕ α2 is a P -winning strategy for B.

Proof. Consider any terminal position T obtained by following α1⊕α2. To be continuted.

Extra cells of a player P ’s colour are never disadvantageous, so a P -move to a cell c that
yields P -captured cell set S is at least as good for P as any move to a cell of S. Such a cell c is
said to P -capture-dominate all cells in set S. When considering moves, a player P can ignore
all cells that are dead, captured by either player, P -vulnerable, or P -capture-dominated; if
she has a winning move and there are other cells available, then she has a winning move to
one of the other cells. See [4, 6, 7, 8] for more on inferior cell analysis.

3 Strategy Sum

4 Permanently Inferior Cells

Before describing a new kind of inferior Hex cell, we first generalize the notion of vulnerability.
A cell c is vulnerable-by-capture for player P if her opponent P has a reply that captures
a set S which when P -coloured makes c dead; the reply is the killer, and the subsequent
capturing strategy is the killing strategy. See Figure 9. S can be empty, so vulnerable-by-
capture generalizes vulnerable. P -colouring a P -captured set does not change a position’s
winner [8] so, if in a Hex position a player P has a winning move, then she has a winning
move that is not at a P -vulnerable-by-capture cell.

Figure 9: A White-vulnerable-by-capture cell (left, dot). If White plays there, Black can
reply (next) and capture cells which, if Black-coloured (next), kill the White cell.

We now introduce a new kind of inferior cell. Let P be a player with opponent P , and
consider a Hex position with a set C of uncoloured cells, a cell c1 in C such that each cell in
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C \ {c1} is P -vulnerable-by-capture to a killing strategy using only cells in C, and such that
some c2 in C different from c1 is P -vulnerable to c1. Then we say that c2 is permanently

inferior for P . See Figure 10.

Figure 10: A White-permanently inferior pattern (left): the dotted cell is White-permanently
inferior. The three unshaded cells are each White-vulnerable-by-capture to the shaded cell
(next, next, next); also, White-colouring the shaded cell kills the dotted cell (right).

Theorem 2. Let c2 be a P -permanently inferior cell in a Hex position S, and let T be the

position obtained from S by P -colouring c2. Then the winner of S is the winner of T .

Proof. Extra P -coloured cells are never P -disadvantageous, so if P wins S then P wins T

and we are done. Suppose then that P wins S. Thus P has a winning strategy for S.
Furthermore, she has such a strategy in which she never plays at a dead, P -captured, or
P -vulnerable-by-capture cell.

Let c1 and C be as in the definition of permanently inferior. Notice that the uncoloured
cells of C \ {c1} remain P -inferior in any continuation from S in which P has not coloured
any cell of C \ {c1}: they will be either dead, P -captured, or still P -vulnerable-by-capture.
It follows that if P ever plays in C, then her first such move is to c1, at which point c2 is
killed unless it is already P -coloured. Thus P never plays at c2, and her winning strategy
also applies to position T .

Figure 11: Black-colouring a White-permanently inferior cell does not alter the winner.

Figure 12: Two more White permanently inferior patterns.
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5 Handicap Strategy

We now describe Black’s ⌈n+1

6
⌉-handicap strategy for n×n Hex. Orient the board so that

the two bottom borders meet at an obtuse angle. The row of cells along the bottom Black
border is the first row; the column of cells along the bottom White border is column 1. The
handicap cells are the cells in the second row in column n− 3, and in columns 2 + 6× j for
each j in {0,. . . ,⌊n

6
⌋ − 1}. The primary cells are the first row cells adjacent to a handicap

cell. The inferior regions are the sets of four cells in the first two rows that, assuming all
handicap cells and primary cells are Black, match the permanently inferior pattern in Figure
10. See Figures 13 and 14.

Black’s Strategy Colour the ⌈n+1

6
⌉ handicap cells. Then, in response to each White move,

1. if White colours a first row cell that is killed by Black-colouring all primary cells, then

colour any cell;

2. if White colours a vulnerable-by-capture first or second row cell, then colour any killer;

3. if White colours any other cell, then colour its pair in the (n− 1)×n Shannon strategy

on the board obtained by ignoring the first row.

Theorem 3. Black’s strategy is a winning ⌈n+1

6
⌉-handicap strategy for n×n Hex.
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Figure 13: Our handicap strategy. The first row is labelled k. Handicap cells are solid Black.
Primary pairs are dotted Black. Inferior regions are shaded.

Proof. It suffices to show that every White first row cell is dead when the game ends. This
holds for each primary cell, since these cells form a Black-captured set: each such cell is
White-vulnerable to a Black reply at any neighbouring primary cell.

It also holds for each White first row cell c of an inferior region R, as follows. Suppose
firstly that c is the first cell in R to be coloured White; then, since the primary cells are
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Figure 14: Strategy when the gap between the last two handicap cells is less than five.

Black-captured, c is White-vulnerable-by-capture as in Figure 10. Suppose secondly that the
first cell in R to be coloured White is different from c and one of the three White-vulnerable-
by-capture cells; then, since the primary cells are Black-captured and Black is following the
killing strategy as in Figure 10, c will be dead when the game ends. Suppose finally that the
first cell in R to be coloured White is the single non-White-inferior cell of R; thus, since the
primary cells are Black-captured, the White-permanently inferior cell w will be dead. We
are done if c is w, so assume c is not w, in which case it is adjacent to w; let x be other
first row neighbour of c. We are done if x is coloured since, x is either Black or is White
and will be dead by game end, so in each case c will be dead. But if x is uncoloured, c is
White-vulnerable-by-capture to a Black replay at x. See Figure 15.

c
x

Figure 15: The dotted cell is dead, so c is White-vulnerable to a Black reply at x.

Lastly, the property holds for any cell c not in a primary pair or an inferior region (as
in column n, or in the last pattern of Figure 14), as the neighbouring first row inferior
region cell x will be either Black, or White and dead, or uncoloured; in these three cases c
is respectively dead, dead, and White-vulnerable to a Black reply at x.

Figure 16 shows a game following our strategy. Black 1 and Black 2 are the handicap
moves. Black 4 through Black 64 follow the Shannon strategy; White 35 is at the non-
White-inferior cell of an inferior region, so Black 36 follows the Shannon strategy. The
primary cells k7,k8 are captured by Black 2, so White 65 is at a vulnerable-by-capture cell
of an inferior region, and the reply is the killer Black 66. White 67 is then vulnerable-by-
capture to the killer Black 68. Similarly, the primary cells k1,k2 are captured by Black 1,
so the reply to the vulnerable-by-capture White 91 is the killer Black 92, and the reply to
the vulnerable-by-capture White 93 is the killer Black 94. White 97 will be dead because of
Black-captured primary cells and White 35, so Black 98 could have been played anywhere.
White 99 is at a primary cell, so the reply is the neighbouring killer Black 100. This move
also connects Black’s two sides, ending the game.
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Figure 16: A game following our strategy.

As far as we know, this is the first two-stone handicap strategy for 11×11 Hex. The late
Claude Berge, who was a Hex enthusiast [2, 3], would often give beginners three handicap
stones on 11×11 Hex boards, suggesting that he did not expect them to find a winning
strategy requiring fewer than four handicap stones. We would like to think that our result
would have surprised him.
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