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Abstract. Consider a drawing in the plane of K~, the complete graph on n vertices. 
If all edges are restricted to be straight line segments, the drawing is called rectilinear. 
Consider a Hamiltonian cycle in a drawing of K,. If no pair of the edges of the 
cycle cross, it is called a crossing-free Hamiltonian cycle (cfhc). Let ~(n) represent 
the maximum number of cfhc's of any drawing of K,, and ~(n) the maximum 
number of cfhc's of any rectilinear drawing of K,. The problem of determining 
q~(n) and ~(n), and determining which drawings have this many cfhc's, is known 
as the optimal of he problem. We present a brief survey of recent work on this 
problem, and then, employing a recursive counting argument based on computer 
enumeration, we establish a substantially improved lower bound for q~(n) and ~(n), 
In particular, it is shown that ~(n) is at least k x 3.2684". We conjecture that both 
• (n) and t~(n) are at most cx4.5 ~. 

1. A Survey of the Optimal Crossing-Free Hamilton Cycle Problem 

Let K, be the complete graph on n vertices. All drawings in this paper are 
assumed to be drawn in the plane. If all the edges of  a drawing of  a graph are 
restricted to be straight line segments, the drawing is said to be rectilinear. By a 
crossing of a drawing we mean a pair of  edges which intersect in the drawing. 
A Hamiltonian cycle of a graph is a cycle that visits each vertex of the graph 
exactly once. Consider a particular Hamiltonian cycle in a drawing of  K,. If  the 
cycle includes no crossings, it is called a crossing-free Hamiltonian cycle, or a cfhc 
for short. Let ~(n)  (and respectively t~(n)) represent the maximum number of 
cfhc's of  any drawing (respectively rectilinear drawing) of K,. The optimal cfhc 
problem is to determine ~(n)  and ~(n) ,  and to determine which drawings 

* This research, part of which was conducted at Queen's University, was supported by an 
N.S.E.R.C. postgraduate scholarship. 
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Fig. 1. A drawing of K 6 with 29 cflac's. 

of Kn have ~ (n )  (respectively ~(n) )  cfhc's. Such drawings will be referred to 
as cfhc-optimal (respectively rectilinear cfhc-optimat) drawings. Figure 1 shows 
a drawing of Ks which is both cfhc-optimal and rectilinear cfhc-optimal. The 
drawing has 29 cfhc's; the other 91 Hamiltonian cycles all have at least one 
crossing. 

Let ~,(n) (respectively ~(n)) refer to the minimum number of crossings of any 
drawing (respectively rectilinear drawing) of Kn. The optimal crossing problem, 
also known as the crossing number problem, is to determine the values of u(n) 
and ~(n), and to find which drawings attain this number of crossings. The optimal 
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crossing problem is related to the optimal cfhc problem in that, in general, 
drawings with fewer crossings have more cfhc's. However, this is not always the 
case (e.g., see [H]). Although the optimal crossing problem has been extensively 
studied (see [EG] or [G]), exact values for u(n) and ~(n) are not known for 
n > 1 0 .  

The optimal cfhc problem was first explored by Newborn and Moser [NM]. 
They were able to determine qb(n) and ~ ( n )  exactly for n from 3 to 6, and 
established lower bounds for other small values of  n. Later we extended this list 
of lower bounds [HI. The following is a list of the current best lower bounds for 
d~(n) and ~ (n ) ,  for n up to 13 (values for n up to 8 were established in [NM], 
all others are taken from [H]): 

Be~ known lower bounds 

n 3 4 5 6 7 8 9 10 11 12 13 

• (n) 1 3 8 29 92 339 1252 4956 18 383 75 231 306446 
~(n) ! 3 8 29 96 399 1461 6354 24687 110 162 446798 

The first bounds for q~(n) or ~ ( n )  for arbitrary n were established by Newborn 
and Moser, who showed that 

~ x 10n/3<_ ~(n)_< 2 x 6~-2 x [~J  !, where 101/3- 2.1544. 

The upper  bound was substantially improved by Ajtai et al. [ACNS], who 
showed that every planar drawing of  any graph with n vertices contains at most 
10 000 000 000 000" crossing-free subgraphs. Thus both ~ ( n )  and ~ ( n )  are 
exponential in n. 

The lower bound was first improved by Akl [A], who showed that d~ < ~ (n ) ,  
where d, is asymptotically k x (5+3  X v~) n/3, with k a constant and (5+3  x 
~/~)I/3 -- 2.2707. 

In this paper,  generalizing Akl's approach, we show how the lower bound can 
be substantially improved by counting a subset of  the cfhc's of a certain drawing 
TS~ of Kn. We prove that fn < ~ (n ) ,  where f~ is asymptotically k x 3.2684 ~. 

2. An Improved Lower Bound for ¢P(n) 

In this section we describe a certain rectilinear drawing TS. of  K.,  and then 
count a subset of  its cfhc's. This gives a new lower bound for ~ (n ) .  

2.1. A Description of  the Drawing TSn 

The "TS"  in TSn is mnemonic for "trilateral spiral". Roughly speaking, the 
vertices of  TS,  can be thought of as resting on three gently spiralled arcs emanating 
from the origin. 
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More precisely, let arc A be the arc o f  the circle centered at the point  in the 
plane with Cartesian coordinates (x, 2) and joining (in clockwise order) the points 
(0, 1) and (0, 3), where x > - 7 / 4 ~ .  Arcs B and C are formed by rotating arc A 
respectively 120 and 240 ° clockwise about  the origin, namely the point  (0, 0). 
Place vertices 1,4, 7 , . . .  on arc A, vertices 2, 5, 8 , . . .  on arc B, and vertices 
3, 6, 9 , . . .  on  arc C, so that  if v and w are on the same arc, and v < w, then v is 
closer to the origin than w (see Fig. 2). Figures 1, 3, and 4 show drawings of  
TS6, TS9, and TS~2, respectively. 

The reason for choosing x as described above is to ensure that the line segment 
joining the far end o f  arc A to the near end of  arc C does not intersect arc A in 
any other point. In fact, the arcs are constructed so that any line segment joining 
points on two different arcs intersects each of  the two arcs in exactly one point, 
and  does not  intersect the third arc. 

Let 

["7 r"+'l [7] a =  ~ b =  c =  
' L 3 J' ' 

and relabel vertices 1, 4 . . . .  , 3 a  - 2  as A~, A2, .  • . ,  Aa, vertices 2, 5 . . . .  , 3 b -  1 as 
BI ,  B 2 , . . . ,  Bb, and vertices 3, 6 , . . . ,  3c as C~, C2 . . . .  , Co. Then the following 

(3,0) 

arc A 

the center of 
arc A 

(1,o) 

Fig. 2. Template arcs for TS.. 
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Fig. 3. The drawing TSg. 

is a description of  all crossings of TSn: 

(1) (A,, Ak)(A~, A,,,) for 

(2) ( B.  Bk)( Bj, B,,,) for 

(3) (C. Ck)(Cj, C,,,) for 

(4) (A,, Bk)(Aj, B,,,) for 

(5) (B .  Ck)(Bj, Cm) for 

(6) (C,-, Ak)(Cj, Am) for 

(7) (A,, Ak)(Aj, Bin) for 

(8) (B. Bk)(B~, C,,,) for 

(9) (C. Ck)(Cj, An,) for 

l <_i<j<k <m<-a, 

l<- i<j<k  <m<-b, 

l<_i<j<k<m<-c, 

l<_i<j<_a, l<_k<m<_b, 

l<_i<j<_b, l<_k<m<_c. 

l<_i<j<_c, l<_k<m<-a, 

l<_i<j<k<_a, l<_m<_b, 

l<_i<j<k<_b, l<_m<_c, 

l<_i<j<k<_c, l<_m<_a. 
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~0 

12 

Fig. 4. The drawing TSI2. 

The number of crossings is 

a + b + c  c a +  a, + a b b c a b c 

w h e r e ( y )  is defined as 0 if x < y .  Thus, the total number of crossings of  TSn is 

l l n 4 - 9 0 n 3 + 2 2 5 n  2 -162n  

648 

l l n 4-90n3 + 249 n 2 -290n  + 120 

648 

11 n 4 -  90n 3 + 249n 2 - 250n + 48 

648 

for n congruent to 0, 1, 2 (mod 3), respectively. 
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2.2. Counting cfhc's of TS. 

Let cfhc (TS.) represent the number of cfhc's of TS.. We are unable to determine 
cfhc (TS.) explicitly for arbitrary n. However, by counting a proper subset of 
the cfhc's of TS. ,  we have established a lower bound for cfhc (TS.) ,  which gives 
an improved lower bound for ~(n) .  

Our counting argument is inductive, and relies on the fact that in any drawing 
of TS. ,  any consecutive set of r vertices induces a drawing isomorphic to TSr 
(two drawings of  Kn are isomorphic if the vertices of one can be relabeled so 
that both drawings have the same set of crossings). Thus it follows that in a 
drawing of  TS.+k, the drawing induced by vertices 1 to n is isomorphic to TS..  
We will count cfhc's of  TS.+k by counting cfhc's of TS. ,  and then enumerating 
various ways in which cfhc's of TS. give rise to cfhc's of  TS.+k. 

We classify each cfhc of  TS. according to which of  the three outermost (convex 
hull) edges and which of  the three innermost edges the cfhc contains. In TS. ,  X, Y, 
and Z will represent, respectively, the edges (n - 2, n - 1), (n - 1, n), and (n - 2 ,  n) 
and x, y, and z will represent the edges (1, 2), (2, 3), and (1, 3). We will use y to 
represent cfhc's. Thus a y(X, n) will represent a cfhc of TS. that includes the 
edge ( n - 2 ,  n - 1 )  but neither edge ( n - l , n )  nor (n-2 ,  n), A y(yz, n) will 
represent a cfhc of TS. that includes the edges (2, 3) and (1, 3) but not edge 
(1, 2). We will ignore cfhc's which contain all or none of either the outermost 
or innermost edges. 

We create cfhc's of TS,+k by starting with a cfhc of  TS, on vertices 1 to n, 
removing either one or two of its outermost edges, and then joining the resulting 
crossing-free path to vertices n + 1 to n + k. For k = 1 and 2 we enumerate by 
hand all the possible ways in which this can be done. For k - 3  we show how 
this can be done in a more systematic way (and in a way which allows for 
computer enumeration). 

2.2.1. Case k = I: creating cfhc's of TS,+, from cfhc's of TS,. Figure 5 shows 
all nine ways in which cfhc's of  TSn give rise to cfhc's of  TSn+I upon removal 
of  an outermost edge. (Only vertices n - 2 to n + 1 of TSn+t are shown in Fig. 5. 
The dashed line in the figures represents that part of the cfhc which visits vertices 
1 to n - 3 . )  In particular, 

each y(X, n) gives rise to a y(Z, n + 1), 
each y(Y, n) gives rise to a y(YZ, n + l ) ,  
each 7(Z, n) gives rise to a y(Y, n + l ) ,  
each y(YZ, n) gives rise to a y(YZ, n + l )  and a y(XY, n + l ) ,  
each y(ZX, n) gives rise to a y (  IF, n + 1) and a y(Z, n + 1), 
each y(XY, n) gives rise to a y(YZ, n + l )  and a y(ZX, n + l ) .  

For 1) = X, Y, Z, YZ, ZX, XY, let cfhc (l-l, n) represent the number of y(fl ,  n), 
and let t~ be the six element vector whose components are cfhc (fl, n). Then we 
have shown that 

t.+~>- N~ x t., (1) 
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,..~-" -~ (z,n+l) 
n 4 " - "  n - - t  

" A -Y (Y,-) ,],, ,~ (YZ,n+l) 

(z,.) ~_...~ ~_,... ~ (Y'~+~) 

-~ (YZ,.) ~ .  

.~ (vz,.) / ,  

3' (YZ,n+I) 

L ~ (XY, n+l) 

-r (zx,.) A 

,~ (zx.n) l ~ k  

~ (Y,n+l) 

"~ (Z,n+l) 

where 

-~ (xY,,) 
/• "r (ZX,n+l) 

"7 (YZ,n+I) 

Fig. 5. Creating cfhc's of TS.+ t from cfhc's of TS.. 

N! --- 

0 0 0 0 0 0 
0 0 1 0 1 0 
1 0 0 0 1 0 

0 1 0 I 0 1 
0 0 0 0 0 1 
0 0 0 1 0 0 
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From (1) it follows that cfhc (TS,) is asymptotically at least c x r~', where c is 
some constant and r, is the dominant eigenvalue of N,, namely (to four decimal 
places) 1.8124. 

2.2.2. Case k=2: creating cfhc's of TS.+2 from cfhc's of TS.. Figure 6 shows 
all ways in which cfhc's of TS.+2 are created from cfhc's of TS.. (Only vertices 

3" (x..) 

"7 (Y,n) 

3" (z,n) 

• n41 
t n-2 

n~ ,2X  n-1 
n+2 

"7 (YZ,n) / ' ,  

"7 (YZ,n) /,,. 

3" (YZ,n) / ,  

3" (ZX,n) 

-~ (ZX, n) 

3" (zx,n) 

3" (xY..) .7',,, 

"t (xY, n) . ' ~  

3" (XT,n) ,"X 

Fig. 6. 

"7 (Y,n+2) ,,,i~x~ 

"7 (XY,n+2) ~ ~ "7 (YZ,n+2) 

3"(XY,n+2) ~ ~ 3"(YZ,n+2) 

3"(XY,n+2) ~ ~ 3"(YZ,n+2) 

3" (XY, n + 2 ) ~  ~ 3" (YZ,n+2) 

"7 (ZX,n+2)  , ~  

3" (~Y',n+2) ~ ~ 3" (YZ,n+2) 

3" (Y,n+2) 

3" ( X , n + 2 ) / ' ,  

q' (Y,n+2) ..,"~'X~ 

3"(XY,n+2) ~ ~ 3"(YZ,n+2) 

3" (Z,n+2) , ' ~  

Creating cfhc's of TS,+2 from cfhc's of TS.. 
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n - 2  to n +2  of  TS,+2 are shown in Fig. 6.) In particular, 

each ~/(X, n) yields a y(Y, n+2 ) ,  
each ~/(Y, n) yields a 3,(YZ, n + 2 )  and a 3,(XY, n +2 ) ,  
each ~/(Z, n) yields a y(YZ, n + 2 )  and a y(XY, n+2) ,  
each ~/( YZ, n) yields two ~,( YZ, n +2),  a ~,(ZX, n +2),  and two y(XY, n +2),  
each ~/(ZX, n) yields a 3 , (X,n+2) ,  a 3 , (Y,n+2) ,  a 3,(YZ, n+2), and a 

~/(X Y, n+ 2 ) ,  
each y(XY, n) yields a ~/(Y,n+2),  a y ( Z , n + 2 ) ,  a 3,(YZ, n+2), and a 

y(XY, n+2) .  

This information is summarized in matrix form as 

where 

N~= 

t.+2-->- N2 x t., (2.1) 

0 0 0 0 1 0 

1 0 0 0 1 1 

0 0 0 0 0 1 

0 1 1 2 1 1 

0 0 0 1 0 0 

0 1 1 2 1 1 

Finally, note that if we count cfhc's of  TS,+2 created by either adding two 
vertices to a cfhc of  TS,  (as just described), or by twice adding a single vertex 
(as described in Case k = 1 above), then we have the following improvement: 

t.+2----- MIx  t.+1 + M2 x t. (2.2) 

where M1 = N1, and M2 = N2-  (N1 x M~). The matrices MI and M2 are listed in 
the Appendix. The asymptotic rate of  growth of  the lower bound for cfhc (TS,) 
as determined by (2.2) is c x r~, where r2 is the dominant eigenvalue of  the 12 
by 12 matrix P2, where 

Mz M2] 
P~= I6 0 ' 

and where /6 is the 6 by 6 identity matrix. The value of r2 is (to four decimal 
places) 2.1215. 

2.2.3, Case k >- 3: creating cfhc" s of TS,+k from cfhc's of TS,. We now show 
how to enumerate the ways in which cfhc's of  TSn+k can be created from cfhc's 
of  TS, ,  without having to draw figures corresponding to those shown in Figs. 5 
and 6, 

A cfhc of  TSn÷k is created by taking a drawing of TS,+k, placing a cfhc of  
TS,  on vertices 1 to n, removing one or two of  its outermost edges, placing a 
cfhc of TS3÷k on vertices n - 2 to n + k, and then removing one or two of  the 
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latter cfhc's innermost edges, so that each of the edges ( n - 2 ,  n -  1), ( n -  1, n), 
and ( n - 2 )  will have been removed from either the former or latter cfhc. For 
example, Fig. 7 shows how a cfhc of T S .  is created by drawing a y(X, 8) on 
vertices 1 to 8, removing the edge X = (6.7), drawing a y(yz, 6) on vertices 6 to 
11, and removing the edges y = (7, 8) and z = (6, 8). The following is a summary 
of all ways in which cfhc's of TS.+k can be thus created: 

Edge(s) removed Edge(s) removed 
Cfhc on vertices from cfhc Cfhc  on vertices from cfhe 

l t o  n on l . . . n  n - 2 t o  n+k on n - 2 . . . n + k  

3"(X, n) X 3"(yz, 3+ k) y, z 
y( Y, n) y y(zx, 3+ k) z, x 
3,(Z, n) Z y(xy, 3+ k) x, y 

3"( YZ, n) Y 3'(zx, 3 + k) z, x 
y( YZ, n) Z 3"(xy, 3 + k) x, y 
3"( YZ, n) Y, Z 3"(x, 3 + k) x 
y(ZX, n) Z y(xy, 3+ k) x, y 
y(zx, n) X 3'(yz, 3+ k) y, z 
v(ZX, n) Z, X -/(y, 3+  k) y 
y(XY, n) X y(yz, 3+ k) y, z 
y(XY, n) y 3"(zx, 3 + k) z, x 
y(XY, n) X, Y y(z, 3 + k )  z 

For [ I = X ,  Y,Z,  YZ, ZX, X Y  and a = x , y , z ,  yz, zx, xy, let T.(fl ,  a)  be the 
number of  y(f~, a )  of  TS..  Then the following inequality follows from the above 

summary: 

tn+k(~"~ ) >'-- T3+ k(~"~ , yz) x t . (X)  

+ T~+k(~, zx) x t . ( Y )  

+ T3+k(~'~ , xy) x t . (Z)  

+ (T3+k([ '~ , Z X ) +  T3+k(~'~, x y ) +  T3+k([l, x ) ) x  t . (YZ)  

+ ( Ta+k(fl. xy) + T3+k(D,, yz) + Ta+k(fl. y)) X t . (ZX)  

+ ( T3+k(II. yz) + T3+k(fl, zx) + T3+k(~, z)) X t . (XY) .  

Let T. be the 6 by 6 matrix whose entries are T.(fl ,  a),  and let 

Q= 

0 0 0 1 0 0 '  

0 0 0 0 1 0 

0 0 0 0 0 1 

1 0 0 0 1 1 

0 1 0 1 0 1 

0 0 1 1 1 0 
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9 

.,o, 

"tl* 

"r (x,s) 7 (y~,S) 

7 (X,S) m i n u s  edge X 

Fig. 7. 

"7 (yz,6) minus edges y and z 

/& 
Creating a c~¢ of TS~ from a c ~ c  of TS s and a cNc of TS 6. 

Then the preceding inequality can be written in matrix form, namely 

t,+k>--NkXt,, where Nk= T3+kXQ. (k.1) 

As before, we can improve slightly on this inequality by creating cfhc's of 
TS,÷k from cfhc's ofTS,,  TS,+~,. . . ,  TS,+k_~ (i.e., not just from TSn). This yields 
the following: 

tn+k > MIx t . + k _ l +  M2 × t n + k _ 2  + • • ' + M k  × t,, (k.2) 

where 

Mk = Nk - ( N ,  x M,_, + N2 x Mk-2+ • • • +Nk- ,  x M,).  

The matrices T3+k were determined by computer enumeration, for k = 3 to 11. 
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Programs were written in C and run on a Vax 11-750 with operating system Unix 
4.2. Time constraints prevented further computations. For successive values of  
k, the amount of c.p.u, time used increased by a factor of about 6. As approximately 
50 hours of c.p.u, time were required for k =  11, about 300 hours might be 
necessary for the case k = 12. 

As was the case with (2.2), the inequality (k.2) can be written as an inequality 
involving the single 6k by 6k matrix Pk, where 

P k =  

M1 M2 "'" Mk-1 Mk 1 
I6 0 . . .  0 0 |  

0 0 " ' "  16 0 J 

The dominant eigenvalue rE of Pk gives the asymptotic rate of growth of the 
lower bound for cfhc (TS,) as determined by (k.2). The matrices T3+k and the 
eigenvdlues rk are all given in the Appendix. The best lower bound (to four 
decimal places), achieved with k = 11, is cfhc (TS,) --- c x 3.2684 ~. Thus it follows 
immediately that ~ (  n ) >- c x 3.2684 ". 

3. Open Problems 

We have established an improved lower bound for ~(n) ,  namely 

c x 3.2684" -< c~ (n), for some constant c, 

by counting only a proper subset of  the cfhc's of  TS,.  Thus determining cfhc (TS,) 
explicitly or even asymptotically is still open. Extrapolating the values rk (see 
the Appendix) suggests that cfhc(TSn) might be something near c x 3.5 ~, for some 
constant c. 

There are several rectilinear drawings of  Kn that have fewer crossings than 
TSn, and almost certainly have more cfhc's (see [HI), TS~ was selected for 
analysis of its number of  cfhc's because its symmetries allow for a recursive 
counting argument. Crucial to our argument is the fact that any k consecutive 
vertices of TS,  induce a drawing isomorphic to TSk; we know of  no drawing of 
K. with fewer crossings than TSn which has this property. 

For all values of n for which cfhc's have been explicitly counted, no drawing 
of TSn has more cfhc's than a certain non-rectilinear drawing BK, (see [H]); all 
values of lower bounds for ~ (n )  which appear in the table in Section 1, correspond 
to the number of  cfhc's of  BK,. We conjecture that the number of cfhc's of  BK~ 
serve as an upper bound for both ~ ( n )  and qa(n). From the values of  cfhc (BK~) 
that appear in this table, we conjecture that cfhc (BK,) is asymptotically c x r ~, 
where 4.3 < r < 4.5. Finally, we conjecture that both ~ (n )  and ~ ( n )  are less than 
c x 4.5", for some constant c. 
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Appendix 

This Appendix contains 

the matrices T6 to T~4 (augmented), 
the dominant eigenvalues of matrices ,ol to PH- 

Recall that in a cfhc of the drawing TS,, 

X, Y, and Z represent, respectively, the edges ( n - 2 ,  n -  1), ( n - 1 ,  n), and 
( n - 2 ,  n), 

x, y, and z represent, respectively, the edges (1, 2), (2, 3), and (1, 3). 

Recall that the entry tn(l'~, a) of matrix T, is the number of cfhc's of the 
drawing TSn with outermost edge set fl and innermost edge set a, where l) takes 
on the values X, Y, X, YZ, ZX,  X Y  and a takes on the values x, y, z, yz, zx, xy. 
For example, the entry in row 5, column 2 of matrix T7 is the number of cfhc's 
of TS7 with outermost edge set {Z, X} and innermost edge set {y}, i.e., the number 
of cfhc's of TS7 that contain edges (5, 7) and (5, 6) but not edge (6, 7), and that 
contain edge (2, 3) but not edges (1, 2) and (1, 3). For the sake of  completeness, 
the matrices T, have been augmented in this Appendix to include a seventh row, 
corresponding to those cfhc's containing none of the edges X, Y, and Z, and a 
seventh column, corresponding to those cfhc's containing none of the edges x, y, 
and z. Thus, for n > 3, the sum of all entries of the augmented matrix T, gives 
the total number of cfhc's of the drawing TSn. 

Recall that the number of different cfhc's of the drawing TS,+k that can be 
created by adding exactly k vertices outside a drawing of TS, is given by the 
equation 

tn+k >- Nk X tn, (k.1) 

where Nk = T3+k X Q, and where the entries of the column vector tn are the number 



A Lower Bound for the Optimal cfhc Problem 341 

of cfhc's of TS, with outermost edge set (respectively) X, Y, Z, YZ, ZX, XY .  The 
matrix Q is shown below. 

Recall that the number of different cfhc's of the drawing TS,+k that can be 
created by adding 1 ,2 , . . . , o r  k vertices to the drawings TS,+k_~, 
TS~+k-2,..., TS,, respectively, is given by the equation 

t.+k -> MIx t.+k-1 + M2 × / . + k - 2  + " " " - [ "  Mk × tn, (k.2) 

where Mk = Nk - (  N1 x Mk-l + N2 x Mk-2 + " "" + Nk-1X MO. 
Recall that the asymptotic rate of growth of the number of cfhc's of TS, 

determined by equation (k.2) is equal to c x r~, where rk is the dominant eigenvalue 
of the 6k by 6k matrix Pk, shown below. 

Recall that the dominant eigenvalue of Pk is the largest real root of the 
characteristic polynomial of Pk. 

Q= 

"0 0 0 1 0 O" 

0 0 0 0 1 0 

0 0 0 0 0 1 

1 0 0 0 1 1 

0 1 0 1 0 1 

-0 0 1 1 1 O. 

~ =  

I M1 M 2  • " " M k - I  M k ]  

t6 o . . -  0 0 1  0,6 0 0r 
0 0 " ' '  /6 O J  

Matrices T6 to T~4 (augmented) 

2 1 1 0 0 0 0 
1 2 1 0 0 0 0 
1 1 2 0 0 0 0 
0 0 0 1 2 2 0 
0 0 0 2 1 2 0 
0 0 0 2 2 1 0 
0 0 0 0 0 0 2 

2 4 2 1 2 1 1 
3 2 4 2 1 2 1 
4 2 3 2 1 2 2 
1 2 1 3 4 3 0 
2 1 2 3 3 2 0 
2 1 2 1 3 3 0 
2 1 1 0 0 0 4 

10 7 12 5 5 7 5 
14 10 10 7 6 6 6 
10 10 7 5 7 5 7 
6 5 7 6 8 8 1 
7 5 5 3 7 6 t 
6 7 5 7 8 8 2 
6 7 5 1 2 1 12 

38 36 36 26 22 22 24 
36 38 36 22 26 22 24 



342 R.B. Hayward 

Matrices T 6 to T14 (augmented)--continued 

36 36 38 22 22 26 24 
26 22 22 20 22 22 9 
22 26 22 22 20 22 9 
22 22 26 22 22 20 9 
24 24 24 9 9 9 48 

130 118 121 68 82 70 96 
145 121 141 75 84 86 94 
137 130 145 90 84 79 99 
84 82 84 64 70 64 42 
79 70 86 58 64 53 41 
90 68 75 47 64 58 42 
99 96 94 42 42 41 160 

526 465 489 257 282 300 393 
558 534 526 321 315 319 394 
534 441 465 245 300 271 393 
319 271 300 186 218 208 178 
321 245 257 139 196 186 175 
315 300 282 196 212 218 182 
394 393 393 175 182 178 580 

1990 2077 2077 1192 1108 1105 1650 
2077 1990 2077 1105 1192 1108 1650 
2077 2077 1990 1108 1105 1192 1650 
1192 1105 1108 703 745 745 754 
1108 1192 1105 745 703 745 754 
1105 1108 1192 745 745 703 754 
1650 1650 1650 754 754 754 2232 

7785 6920 7480 3658 4203 3771 6581 
8271 7480 7858 3992 4377 4289 6736 
7818 7785 827t 4396 4374 4081 6739 
4374 4203 4377 2553 2682 2556 3158 
4081 3771 4289 2365 2556 2252 3071 
4396 3658 3992 2154 2553 2365 3037 
6739 6581 6736 3037 3158 3071 8412 

31762 29365 29190 1 4 5 3 7  15759 1 6 2 2 7  27613 
32690 32079 31762 16754 16937 1 7 0 4 1  28313 
32079 27782 29365 1 3 9 7 6  1 6 2 7 3  1 5 3 4 1  27313 
17041 15341 16227 8699 9612 9210 12931 
16754 1 3 9 7 6  14537 7418 8889 8699 12474 
16937 1 6 2 7 3  15759 8889 9314 9612 12968 
28313 27313 27613 12474 1 2 9 6 8  1 2 9 3 1  33265 

Dominant eigenvalue of matrices P~ to PI~ 

1.8124 2.9551 
2.1215 3.0457 
2.4992 3.1410 
2.6004 3.2039 
2.7273 3.2684 
2.8726 
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Number of cfhc's of TS~ to TS14 

With at least one innermost edge Total 
and at least one outermost edge number 

3, 
- -  8 
27 29 
79 91 

257 313 
942 1 188 

3 166 4 154 
11 517 15 527 
45 441 62 097 

165 986 233 042 
642 106 918 595 
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