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Abstract
Proof Number search (PNS) is an effective algo-
rithm for searching theoretical values on games
with non-uniform branching factors. Focused
depth-first proof number search (FDFPN) with dy-
namic widening was proposed for Hex where the
branching factor is nearly uniform. However,
FDFPN is fragile to its heuristic move ordering
function. The recent advances of Convolutional
Neural Networks (CNNs) have led to considerable
progress in game playing. We investigate how
to incorporate the strength of CNNs into solving,
with application to the game of Hex. We describe
FDFPN-CNN, a new focused DFPN search that
uses convolutional neural networks. FDFPN-CNN
integrates two CNNs trained from games played by
expert players. The value approximation CNN pro-
vides reliable information for defining the widen-
ing size by estimating the value of the node to ex-
pand, while the policy CNN selects promising chil-
dren nodes to the search. On 8x8 Hex, experimental
results show FDFPN-CNN performs notably better
than FDFPN, suggesting a promising direction for
better solving Hex positions where learning from
strong players is possible.

1 Introduction
Much algorithm development for two-player zero sum per-
fect information games is directed towards creating strong
players; however, solvers are also of interest, not only be-
cause they are typically more challenging, but also they pro-
duce flawless perfect play. Proof Number Search (PNS) [Al-
lis et al., 1994; Kishimoto et al., 2012] is a best-first search
paradigm designed for solving AND/OR game trees. Since its
invention, many variants have been proposed for finding the-
oretical values in various games [van den Herik and Winands,
2008]. Depth-first proof number search (DFPN) [Nagai,
2002] is a depth-first reformulated PNS variant that adopts
thresholds. It has the same behavior as PNS in AND/OR
trees, but has lower memory footprint, at the expense of re-
expansion. DFPN has been successfully applied to Check-
ers [Schaeffer et al., 2007], Tsume-Go [Kishimoto and

Müller, 2005; Kishimoto, 2005], Tsume-Shogi [Kishimoto,
2010] and capturing problems in Go [Yoshizoe et al., 2007].

PNS algorithms employ proof and disproof numbers to
guide node expansion, which allows the search to effectively
exploit narrow and deep branches that seem to be promis-
ing. They are particular effective in games where the branch-
ing factor is non-uniform [Allis et al., 1994]; e.g., in Tsume-
Shogi, DFPN would search more than 900 plies before find-
ing checkmate [Kishimoto, 2010].

Applying PNS to games with near-uniform branching fac-
tors without dedicated heuristics is problematic, since the cal-
culation of proof and disproof number always takes branch-
ing factor into account. In worst case, PNS would be-
haves much the same as inefficient breadth-first search if
the branching factor is exactly uniform. To address such
a problem, in Go, inspired by the widening technique in
threat search [Cazenave, 2004], Yoshizoe [Yoshizoe, 2008]
proposed a dynamic widening method for DFPN to solve
the capturing problems in Go, which works by sorting the
nodes by proof or disproof numbers and then only consider-
ing a subset of children nodes. Their new algorithm performs
much faster than normal DFPN, but is four times slower
than aggressive forward pruning. Still, it has the advan-
tage that correctness is guaranteed, as results obtained by
forward pruning were occasionally wrong [Yoshizoe, 2008].
In Hex, FDFPN was proposed by Henderson [Henderson,
2010]. FDFPN shares similar dynamic widening idea, but
is with a stronger sorting provided by an augmented cir-
cuit resistance based evaluation function [Anshelevich, 2002;
Henderson, 2010]. Along with heavy knowledge computa-
tion, FDFPN is the best serial algorithm for solving Hex.

However, the FDFPN described by Henderson still has
deficiencies. First, the resistance-based evaluation function
lacks consistent accuracy; i.e., it tends to prefer fillin, domi-
nated cells [Henderson, 2010]. Such a problem is alleviated
but not eliminated by the inferior cells engine and connec-
tions strategy computation. Second, the definition of widen-
ing size is not well-informed: it neglects the inherent dif-
ferences between expanding nodes other than their original
branching factors.

In this paper, we try to address the above deficiencies us-
ing convolutional neural networks. Inspired by the recent
progress in computer Go [Maddison et al., 2014; Clark and
Storkey, 2014; Tian and Zhu, 2015; Silver et al., 2016], we
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train a policy neural network for prioritizing move selection
and a value neural network for deciding widening size, then
propose to integrate those two CNNs into focused proof num-
ber search, thereby realizing a more robust focused DFPN
search. Experiment on 8x8 Hex shows that the resulting
new algorithm performs remarkably better than the original
FDFPN, solving all 32 openings with less than 46.7% node
expansion.

The rest of the paper is organized as follows: Section 2 sur-
veys related work. Section 3 describes our method. Section
4 presents detailed experiments, and Section 5 concludes this
paper.

2 Related Work
Searching game-theoretical values by proof and disproof
numbers [Allis et al., 1994] was originally derived from con-
spiracy number search (CNS) [McAllester, 1988]. The differ-
ence is that proof number search is specialized for AND/OR
trees with binary outcomes, and such a specialization leads to
significant memory reduction compared to CNS.

The ultimate pursuit in AND/OR tree search is a solution
tree that is able to decide the outcome of root node (either true
or false) by back propagating the values of the terminal nodes,
according to the AND/OR structure of the tree. The tree
is usually implicit, hence heuristic information is needed to
guide tree growth, in quest of a solution tree with as few node
expansion as possible. Proof number search uses proof and
disproof numbers to guide node expansion, it defines proof
and disproof numbers as a measure of quality of this node as-
suming it appears in the solution tree. The root node is an OR
node that represents the game state to solve, any node with
opponent to play is AND node. Terminal proven (win for the
first player) node is with proof number 0 and disproof num-
ber ∞, while disproven node is with proof number ∞ and
disproof number 0. If no heuristic initialization is used, leaf
nodes are initialized with proof and disproof number both as
1. The proof and disproof number for any given non-terminal
and non-leaf node n are calculated from bottom-up:

• If n is OR node, its proof number is the minimum of its
children’s proof number; its disproof number is the sum
of its children’s disproof number,

• If n is AND node, its proof number is the sum of its chil-
dren’s proof number; disproof number is the minimum
of its children’s disproof number.

Therefore, in AND/OR trees, proof (disproof) number of
node n can be interpreted as the minimum number of leaf
nodes that have to be proven (disproven) in order to prove
(disprove) node n. PNS works in an iterative fashion, each
iteration, starting from the root node, PNS consecutively se-
lects the child node with smallest proof number at OR node,
and smallest disproof number at AND node, until a leaf node
is selected. Such a leaf node is usually named as Most Prov-
ing Node (MPN) and will be expanded subsequently, then the
values in the influenced branch will be updated before con-
ducting the next iteration. PNS stops until a solution tree is
found or run out of computer memory. Many variants of PNS
can be found in the literature, see [Kishimoto et al., 2012] for
a survey.

PNS suffers from problems like hunger for memory, the
state space in many games are not trees but graphs [Kishi-
moto et al., 2012]. DFPN [Nagai, 2002] adopts two thresh-
olds to avoid unnecessary traverse in the tree, whenever mov-
ing to a child node, it passes the thresholds and conduct Mul-
tiple Iterative Deepening (MID) until thresholds are violated.
As a reformulation of PNS, DFPN is usually more applica-
ble than PNS, but far from ideal. Indeed, various techniques
have been introduced when applying DFPN in specific do-
mains; e.g., Yoshizoe et al [Yoshizoe et al., 2007] introduced
λ search to DFPN to solve the capturing problems in Go, df-
pn(r) [Kishimoto, 2005] was proposed to address the repeti-
tions in Tsume-Go, threshold controlling and source node de-
tection [Kishimoto, 2010] were introduced to DFPN to deal
with overestimation, underestimation and repetitions.

However, because proof and disproof number always
consider branching factor, which makes DFPN (the same
for PNS) behaves much like breadth-first search when the
branching factor is nearly uniform, as occurs in Go and Hex.
As an attempt, Yoshizoe [Yoshizoe, 2008] proposed a dy-
namic widening technique that only considers top-k or a por-
tion of 1/k children nodes during the search. However, the
new method was not quite satisfying, presumably due to
the selection scheme of “promising children nodes”, which
was realized by sorting proof or disproof numbers of sibling
nodes, is too primitive.

Hex has a large and nearly uniform branching factor sim-
ilar to same board size Go. There is no draw in Hex,
and it has been proven that solving arbitrary Hex states is
PSPACE-complete [Reisch, 1981]. Early researches focus on
H-Search [Anshelevich, 2002] which constructs connection
strategies recursively. However, H-Search is incomplete; i.e.,
there exists positions that winning carries cannot be deduced
by practical H-Search, hence tree search is still required. All
8x8 Hex openings were first solved by Henderson et al. [Hen-
derson et al., 2009] after largely extending the knowledge
abstraction techniques in [Hayward et al., 2004] and imple-
menting them into a depth-first search. Focused Depth-first
Proof Number search (FDFPN) was subsequently developed,
which is better than DFPN and at least twice faster than the
original depth-first search on larger board like 8x8 [Hender-
son, 2010].

Recently, deep Convolutional Neural Networks
(CNNs) [Krizhevsky et al., 2012] have been success-
fully applied to computer Go [Maddison et al., 2014;
Tian and Zhu, 2015; Silver et al., 2016], which have
demonstrated the superiority of using CNNs to design well-
informed heuristics in search. Motivated by those previous
work, but instead of playing, we study how to harness the
strength of CNNs for theoretical solving Hex, a challenging
task mainly due to its large and near-uniform branching
factor.

3 Focused Depth-first Proof Number Search
with CNNs

In this section, we first describe our convolutional neural net-
work models, and then show how to incorporate them to proof
number search.
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Figure 1: An 8x8 Hex board in Go-style before and after padding.

3.1 Evaluation by Convolutional Neural Networks
Preparation of data
Unlike the situation in 19x19 Go, where tens of thousands
of high quality game records are available, no large set of
high quality human games is available for 8x8 Hex. How-
ever, strong computer players are available. We generated
training data for learning by playing matches between two
strong computer Hex players under the benzene 1 project: the
Monte Carlo Tree Search player Mohex [Huang et al., 2013;
Arneson et al., 2010] and an αβ player Wolve [Henderson et
al., 2009] .

To increase the variety of encountered game positions, we
varied the time settings per move from 5s to 10s, on a In-
tel Xeon E5-2650 2.30 GHz CPU machine with 4 gigabytes
RAM, iterated over all one and two stone openings, and
turned off the endgame solvers in those two players. We col-
lected 62853 games in total, each associated with a game re-
sult. We then extract our training and testing data from those
games. The first data set D1 we extracted contains 645249
distinct state-action pairs (s, a), split into 580, 000 as train-
ing set and the rest as test set. We prepare dataset D2 for
value regression, this set contains 649373 distinct state-value
pairs (s, z). Since the same position s may appear in two or
more games but associated with different results, we use the
average to label such a state; i.e., letA be the set of games that
s have been played, r(s, g) is the playing result (either +1 or
-1), z =

∑
g∈A r(s,g)

|A| . Again, D2 is split into training set and
test set with a portion of about 90% and 10%, respectively.
We note that, for better data efficiency, instead of selecting
only one state-value pair from each game as in [Silver et al.,
2016], we collect all the state-value pairs (s, z) played in each
game, and rely on the average labelling to reduce correlation.

Input features to CNNs
Like Go, Hex can be viewed as playing on the intersections
of a square board, where black tries to connect the south and
north sides, white tries to connect east and west sides. To
represent this goal of the game, we use extra paddings at
four boarders with black or white stones, as shown in Fig-
ure 1. We adopt one-hot (i.e., binary) encoding to represent
the input features, which consist of 5 planes: the first three are
respectively black, white occupied stones and empty points,
followed by two planes that represent respectively black and
white “bridges”. Table 1 shows the input features.

1https://sourceforge.net/projects/benzene/

Table 1: Input features to CNNs

Features plane index description
black stones 0 black stones
white stones 1 white stones
unoccupied 2 empty points
black bridges 3 black bridge endpoints
white bridges 4 white bridge endpoints

Policy neural network
The policy network has 5 hidden layers. The input features
have size 10 × 10 × 5 after padding borders. First hidden
layer convolves using 48 filters with kernel size 3 × 3 and
stride of 1, then rectified linear unit (ReLU) is applied. The
second hidden layer zero pads an image into 10 × 10 and
convolves using same filters of kernel size 3 × 3 and stride
of 1, again with rectified linear unit applied. Hidden layers 3
and 4 repeats the process as layer 2 . Keeping the stride as
1, hidden layer 5 convolves with 1× 1 kernel size filters with
64 biases for each position; final layer is a softmax function.
The output of policy neural network can be seen as a playing
probability for each point in the board.

Similar to previous work on Go [Maddison et al., 2014;
Clark and Storkey, 2014; Tian and Zhu, 2015; Silver et
al., 2016], we train the policy network to maximize the
likelihood of the move a that has been played in state s,
∆σ ∝ ∂ log pσ(a|s)

∂σ . Instead of vanilla stochastic gradient
descent, for faster convergence, we use the adaptive learn-
ing rate method Adam [Kingma and Ba, 2014] with de-
fault parameters learning rate = 0.001, β1 = 0.9, β2 =
0.999 and ϵ = 10−8 to train our model. We train the pol-
icy network for 1.2 × 105 steps (13 epochs) with mini-batch
size 64, this took about 2.5 hours on an Intel i7-6700 CPU
machine with 32GB RAM and NVIDIA GTX 1080 GPU.
Top one prediction accuracy on the testing data is 60.4% and
about 67% on training data – a results slightly higher than
the best accuracy in computer Go [Maddison et al., 2014;
Tian and Zhu, 2015]. Note that, as in previous work on Go,
“ground-truth” labels in the training data are inherent noisy,
because they were produced by imperfect players. Therefore,
a higher accuracy does not necessarily imply a better neu-
ral network. Figure 2 presents the top-k accuracy varying
k = 1 . . . 10. We implement the policy network using tensor-
flow 2.

Value neural network
We train a value regression neural network on the training
data split from D2. As a result of average labelling, early
game positions were generally associated with a moderate
value; e.g., opening a4 is labelled as −0.08 in our dataset.
Since for arbitrary position, the optimal value is unknown, we
believe that by this average labelling, the risk of training the
neural network with strong but wrong signals gets mitigated.

The first 6 layers of our value network are exactly the same
as the policy network. After layer 6, the next layer convolves
with kernel size 1 × 1 filters of stride 1, followed by a fully
connected layers with 48 units, the last layer is a tanh func-
tion that squashes the output to [−1,+1].

2https://www.tensorflow.org/

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3670



60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

A
cc
u
ra
cy
(%

)

K

Figure 2: Top k move prediction accuracy on test data.

We train the value network to minimize the Mean Square
Error (MSE) between the predicated value vθ(s) and corre-
sponding label value z, i.e., ∆θ ∝ ∂vθ(s)

∂θ (z − vθ(s)). With
mini-batch of 64, using Adam optimizer [Kingma and Ba,
2014], we train the value network for 1.6× 105 steps, taking
about 3.5 hours. This achieves an MSE of 0.067 on the train-
ing dataset, and 0.083 on the test dataset, which indicates the
over-fitting is small. Again, the value network is implemented
with tensorflow.

3.2 Incorporate CNNs to Proof Number Search
Before describing how to integrate policy and value networks
to proof number search, we first review the general idea of
focused depth-first proof number search, then explain how to
use these two CNNs to redefine FDFPN. Note that when we
say a node is losing (wining), it is with regarding to the player
to play at this node.

Focused proof number search
For game trees with large branching factor, the idea of a fo-
cused search is to narrow the breadth of search by first fo-
cusing effort on a proportion of promising moves. In the
case of proof number search, reducing the width to a small
but fixed value is problematic, since the strongest point of
PNS is to exploit the non-uniformity of a game tree. In-
deed, FDFPN [Henderson, 2010] controls the number of child
nodes expanded for a search node by the following formula:

child limit = base + ⌈µ× |live children|⌉ (1)
Here, widening factor 0 < µ < 1. The parameter base is

usually set as 1; live children contains all children nodes that
have not been pruned. For arbitrary node in the search tree,
once a winning children node is revealed, it will be pruned,
and the above formula either maintains the same child limit
or introduces a new child. If a losing child node is found,
clearly that all other children nodes can be abandoned since
the current node is thus solved. The intended strength of
Equation (1) is that when the move ordering function is good,
a node can be solved to be winning by only exploring a few of
its children nodes. However, when the move ordering func-
tion is poor, perhaps quite a few children nodes have to be re-

vealed as winning before a losing child node can be included
to the search.

We summarize that the idea of FDFPN constitutes two cru-
cial components: (a) a manner to define widening size and
(b) an external move ordering function for selecting promis-
ing moves. In [Henderson, 2010], (a) was done by manually
setting an empirical widening factor, and (b) was realized by
a resistance-based heuristic evaluation function.

It is uninformative to adopt a static widening factor for all
expanding nodes regardless their likeliness of being win or
lose in optimal. The resistance-based evaluation function, on
the other hand, though had been improved by the aid of the
complicated inferior cell and virtual connection engines, is
still lacking of consistent accuracy [Henderson, 2010].

Dynamic FDFPN using CNNs
We now describe how to use CNNs to redefine FDFPN.
Through the depiction above, we can see that the move or-
dering function is merely used for selecting promising moves
into the search tree; the strict order of the selected moves
does not matter much since proof number search ultimately
uses proof or disproof numbers for choosing the most prov-
ing node. The high move prediction accuracy of our trained
policy neural network has shown its capacity in mimicking
expert’s playing of good quality moves. Therefore, our first
modification of FDFPN is to use the trained policy network
to replace the resistance-based evaluation function.

How many “promising moves” should be selected is a
question. A too large widening factor would lead to decreased
performance, while too small would increase the possibility
of mis-selection of existing winning moves. Preferably, the
widening size should be a function of the quality of the ex-
panding node, which can be measured by the value neural
network. Hence, our second modification is, for any expand-
ing state (or tree node) s, its widening size is dynamically
decided by the following revised formula:

l(s) = base+ ⌈f (s)× |live children|⌉, (2)
where f (s) is defined as

f (s) = min{µ, 1 + vθ(s)} (3)

As in Equation (1), µ is a widening parameter. The differ-
ence between Equation (1) and Equation (2)–(3) is that: when
vθ(s) is close to −1, which indicates s is likely to be losing,
then the smaller estimation value vθ(s) will be used as the
widening factor. Therefore, the smaller vθ(s) is, the smaller
widening size would be. This may seem counter-intuitive,
since one may expect to expand all the children nodes, if a
state s has an optimal value of −1 — because eventually all
s’s children must be solved to certificate s is losing. However,
a losing node is a wining move for its parent state. As proof
number search prefers nodes with small branching factor, giv-
ing a losing node a smaller widening size would increase its
chance of being selected by its parent node. This is desirable
for the root state and every other parent states in the search
tree. Another explanation is that if a state is losing, all its
children nodes must be solved, it is perhaps better sequen-
tially solving them one by one in a depth-first fashion rather
than frequently jumping around.
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4 Experiments
4.1 Setup
We built FDFPN-CNN upon benzene, a c++ open source Hex
code base for state-of-the-art solving and playing Hex [Arne-
son et al., 2010; Henderson, 2010; Huang et al., 2013]. No-
table features of benzene include (1) An Inferior Cell (IC) en-
gine for knowledge computation, it eliminates many inferior
cells from consideration; (2) A reimplemented Virtual Con-
nection (VC) engine [Pawlewicz et al., 2015] for winning
strategy computation by H-search. We note that now the best
Olympiad automated players (e.g., MoHex, Wolve, DeepHex,
Ezo) [Hayward et al., ] and the best solver (FDFPN) are all
built upon benzene.

We export the trained models for solely forward inferenc-
ing after training is finished. FDFPN-CNN was modified
upon FDFPN, and we compile it with tensorflow libraries us-
ing g++ with O3 optimization. Since those two CNNs are
independent from the VC and IC engines in benzene, two
asynchronous threads were used, overlapping with the VC
and IC computation. We note that the current resistance-
based evaluation does not permit similar asynchronous com-
putation, because it requires VC and IC information. Due to
asynchronous evaluation, we found the runtime overhead be-
cause of evaluating of CNNs becomes small: evaluating CNN
takes less than 1 ms, but computing VC and IC could be 10
times slower in early positions.

We conduct comparative experiments on tractable but still
challenging 8x8 Hex openings. It should be noted that, by
now, with prolonged computation time of several months, all
9x9 Hex openings have been solved by turning the FDFPN
solver into parallel [Pawlewicz and Hayward, 2013]. We con-
sider only 8x8 Hex in this paper for the convenience of em-
pirical study of new ideas.

All experimental results in this section were obtained on
the same Intel i7-6700 CPUmachine with 32 gigabytes mem-
ory and NVIDIA GTX 1080 GPU, running a 64bit Linux sys-
tem.

4.2 Experimental comparison of DFPN, FDFPN
and FDFPN-CNN

Table 2 compares the performances of FDFPN and FDFPN-
CNN on solving all 32 8x8 Hex openings. As a reference,
we also list the results of DFPN, which can be seen as set-
ting FDFPN’s widening factor as 1.0 and sorting moves ran-
domly. As suggested in [Henderson, 2010], base is set to 1
and widening factor is set to 0.2 for FDFPN, the transposition
table size is set to have 221 entries. To see the performance
gaining after applying CNNs, the same factor = 0.2, base =
1 is adopted by FDFPN-CNN.

It is apparent from Table 2 that both FDFPN and FDFPN-
CNN are better than DFPN, since they could solve every
opening much faster than DFPN: the cumulative time of
DFPN is respectively 2.6 and 4.1 larger than that of FDFPN
and FDFPN-CNN, indicating the focused search is indeed
worthwhile.

FDFPN-CNN also performs remarkably better than
FDFPN, as it can solves 27 (out of 32) positions using less
computation time, the largest improvement was observed

Table 2: Experimental comparison of DFPN, FDFPN and FDFPN-
CNN, better results marked by boldface. All times are rounded into
seconds.

posi. DFPN FDFPN FDFPN-CNN
#node time #node time #node time

a1 47383 240 30462 71 12063 46
a2 264718 489 104581 161 61900 116
a3 370973 1350 212140 486 103940 275
a4 1418942 4482 570207 1167 217130 477
a5 3929824 11128 1797393 3377 1226009 2856
a6 525308 1177 272614 473 295163 474
a7 3230008 10067 2874465 5496 1058361 2615
a8 1408664 4024 844403 1799 572892 1300
b1 49607 265 30317 73 12490 43
b2 204342 421 123728 140 48074 82
b3 89920 405 39683 115 19077 82
b4 541376 2003 270571 565 186693 455
b5 463360 1974 193799 526 100489 368
b6 563084 1808 497961 931 223486 576
b7 19182 53 12146 25 6601 16
b8 54590 201 15106 47 12150 43
c1 46926 226 28775 58 10645 38
c2 128112 287 43899 74 118384 133
c3 125365 521 56597 154 25819 82
c4 56951 281 18687 54 11618 54
c5 54388 271 28816 85 17600 63
c6 41018 205 30637 88 10536 45
c7 93673 278 60134 114 42389 90
c8 40562 183 14157 40 20327 63
d1 44295 192 14858 35 10649 34
d2 51451 147 89900 140 16309 37
d3 62776 269 24926 75 12177 48
d4 20368 94 13265 43 8469 35
d5 13821 85 6914 22 4068 20
d6 63014 345 93313 256 13876 59
d7 63574 192 79214 137 40337 87
d8 44634 198 15472 37 14363 40

SUM 14132209 43861 8509140 16864 4534084 10752

on opening a7, where FDFPN-CNN reduces the computa-
tion time from 5495s to 2614s. In summary, FDFPN-CNN
solves all 32 openings with cumulative time 36% less than
that of FDFPN. Since expanding a node is typically expen-
sive, another perspective for performance assessment is node
expansion, FDFPN and FDFPN-CNN respectively expands
8509140 and 4534084 nodes in total. Thus, cumulatively, the
node expansion of FDFPN-CNN is 46.7% less than that of
FDFPN.

FDFPN-CNN does not perform better than FDFPN in ev-
ery cases. In terms of node expansion, on openings a6, c2, c8,
FDFPN-CNN’s results are worse than FDFPN, we suspect
that it is because some nodes were poorly evaluated by vθ
and vσ , thus the search has to focus on solving unnecessary
nodes before including winning moves to the search tree.

4.3 Accuracy of the value neural network
When a state is solved, it means a solution tree (more pre-
cisely, solution graph) has been found and the optimal value
of every node in this solution tree is settled. This provides us
an opportunity to exactly inspect the real estimation accuracy
of our value neural network.

We have seen from Table 2 that opening a5 requires the
most computation time and most number (more than 1×106)
of node expansions to find a solution, thus we present in Ta-
ble 3 the detailed value estimations by vθ on all nodes in the
solution graph to opening a5.

Summing the estimations in Table 3, we obtain 188454
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Table 3: Value estimations by vθ of nodes in the solution graph to
opening a5. Boldface indicates the prediction by vθ matches the true
value.

vθ(s) wining losing vθ(s) wining losing
[−1.0,−1.0] 2 22 (0, 0.1] 806 345
(−1.0,−0.9] 10068 46397 (0.1, 0.2] 840 367
(−0.9,−0.8] 1779 2144 (0.2, 0.3] 911 332
(−0.8,−0.7] 1281 1236 (0.3, 0.4] 1097 341
(−0.7,−0.6] 1022 844 (0.4, 0.5] 1256 336
(−0.6,−0.5] 924 667 (0.5, 0.6] 1525 383
(−0.5,−0.4] 795 520 (0.6, 0.7] 1895 467
(−0.4,−0.3] 799 484 (0.7, 0.8] 2825 522
(−0.3,−0.2] 778 428 (0.8, 0.9] 4987 759
(−0.2,−0.1] 779 380 (0.9, 1.0] 91953 4052

(−0.1, 0] 752 354 SUM 127074 61380

– it represents the size of the discovered solution, in which
127074 are wining nodes, 61380 are losing. Suppose there
is a simple classifier that classifies s as wining if vθ(s) > 0,
otherwise as losing, then it is easy to calculate the accuracy of
this classifier: 22+46397+...+354+806+840+...+91953

188454 = 85.7%
– such a result reaffirms the good quality of our value net-
work. Nonetheless, the total node expansion for solving a5
is 1226009. This suggests that there is, perhaps, still a great
potential for algorithmic improvement.

4.4 Effectiveness of the policy neural network
We further investigate the effectiveness of the policy network
by conducting yet another comparison between FDFPN and
FDFPN-pσ , a program that only replaces the move ordering
function as policy neural network. Both programs use the
same base = 1 and widening factors varying from 0.1 to 1.0.

Figure 3 shows the comparison. FDFPN-resistance is the
original FDFPN that uses resistance-based evaluation func-
tion, and FDFPN-pσ is with the policy network. Apparently,
both methods achieve best performance with widening fac-
tor of 0.2, while the consumed time of FDFPN-pσ is consis-
tently less than that of FDFPN-resistance when the widening
factor is small (≤ 0.5). FDFPN-pσ becomes slightly worse
than FDFPN-resistance when the widening factor is interme-
diately large, perhaps because the policy network is poor at
ranking weaker moves that are seldom played by expert play-
ers. We note that FDFPN-pσ is 17.3% faster than FDFPN-
resistance with widening factor 0.2, while in terms of node
expansion, it is 14.3% less than that of FDFPN-resistance.
Combing the results in Table 2, we can also notice that after
applying value neural network, the node expansion compared
to FDFPN-resistance was futher reduced by 32.4%.

This comparison shows that with small widening factors,
which are desirable for the idea of focused search, the pol-
icy network is indeed more accurate at selecting promising
moves than the circuit resistance-based evaluation function.
The dynamic widening adjustment provided by the value neu-
ral network estimation further improves solving efficiency.

5 Conclusion and future work
We have presented a focused depth-first proof number search
using deep convolutional neural networks. Experimental re-
sults on 8x8 Hex show the convolutional neural networks can
effectively grasp knowledge from data accumulated by expert
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computer players, then we proposed a redefinition of FDFPN
using CNNs, resulting a solver that is able to solve game po-
sitions with much less node expansion.

Nevertheless, it is observed that the search effort is still
substantially larger than size of the final solution tree. In the
future, we intend to work in the following directions. First,
it is necessary to investigate other input features to CNNs,
which may further improve the accuracy of the neural net-
works. Second, our policy network was trained to maxi-
mize the likelihood of playing a single expert move, but it
is more desirable to adjust the training targets so as to dis-
cern frequently played good moves and occasional blunder
moves. Linking log-likelihood with task rewards [Norouzi et
al., 2016] might be helpful. Third, proof number search has
nice theoretical properties on trees, but the state space of Hex
is essential a directed acyclic graph (DAG), mis-selection of
MPN due to exponential over-counting is an issue [Kishimoto
et al., 2012], which should be addressed. Fourth, the focused
search is somewhat sensitive to the accuracy of the value neu-
ral network, the possibility of better estimating the value of a
node by considering also its descendants (i.e., utilize the the
hierarchical AND/OR structure) should be investigated. With
more accurate estimation, a more aggressive focusing scheme
may be possible.

Since in Hex, automatic playing on board sizes up to 11x11
has been very strong, but solving even 9x9 openings still takes
very long parallel computation. On the other hand, playing
and solving share the same aspiration of exploring promis-
ing regions preferably. In the future, we would also like
to work on solving larger board sizes where learning from
strong players is also possible. It is interesting to adapt our
framework for solving other games as well.
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