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Abstract. We define II(n) to be the largest number such that for every set P of n 
points in the plane, there exist two points x, y e P, where every circle containing x 
and y contains H(n) points of P. We establish lower and upper bounds for H(n) 
and show that [n/27J + 2 ~ H ( n ) -  < [ n / 4 ] + l .  We define I~I(n) for the special case 
where the n points are restricted to be the vertices of a convex polygon. We show 
that l~(n)= [ n / 3 ] + l .  

1. Introduction 

Let P be a set o f  n points  in the plane. A circle contains point  x if x lies in the 
interior or  on the boundary  o f  the circle. For  any two points x and y in a set P 
of  n points in the plane, let C(P, x, y) be the min imum number  o f  points contained 
by any circle containing x and y. Define o r ( P ) =  max{C(P,  x, y)}, over all pairs 
of  points x, y in P. A set K o f  n points in the plane will be called convex if the 
points form the vertices o f  a convex polygon.  Define H(n)  = min{~r(P)}, over all 
sets P o f  n points in the plane, and define H ( n ) =  min{cr(K)}, over all convex 
sets K o f  n points in the plane. Neumann-Lara  and Urrutia [2] showed that 

r 1 F-- I 
In this paper  we improve on their results by showing that 

[~7J+2_<tJ(n)_<r41+l and that n ( n ) = r 3 ] + l .  
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2. The Convex Case 

In this section we prove: 

Theoreml. I i ( n ) -  > [ n / 3 ] + l .  

Schmerl [3] provided a similar p roof  for this lower bound  on l i (n) .  We borrowed 
some of  his ideas to simplify our  own presentation. We first state two lemmas 
which will be useful in bounding  C(P, x, y) in both the general and the convex 
case. We use the notat ion (xy) to refer to the line segment f rom x to y. We say 
that a closed region R contains a point x if x lies on the interior or  boundary  of  R. 

Lemma 1. Given P, a set o f  n points in the plane, x, y • P, and a circle 4' through 
x and y, the line segment (xy) divides circle 4' into two closed regions R, and R2. 
f i R ,  and R2 each contain k points of  P, then C(P, x, y) >- k. 

We leave the p roo f  o f  Lemma 1 to the reader. 
A spanning circle of  P is a circle containing all the points in P. A spanning 

circle 4' o f  P through at least three points x, y, z o f  P can always be found.  These 
three points form a triangle, Axyz,  which divides circle 4' into three closed regions 
bordered by arcs o f  4' and the triangle. We call these three closed regions, arc 
regions. 

Lemma 2. Given a set, P, o f  n points in the plane and an integer t, either: 

(a) there exist two points x, y E P such that C( P, x, y)  >- I t / 3 ]  +2 ,  or 
(b) there exists a triangle, Axyz,  containing n -  t + 1 points o f  P. 

Proof. Let P be any collection o f  n points in the plane. For  any three points, 
x, y, z • P, with spanning circle 4' through x, y, z, let f ( A x y z )  be the maximum 
number  o f  points contained in each of  the three arc regions created by A x y z  and 
4'. Choose  three points x,y,  z •  P, with spanning circle 4', which minimizes 
f (&xyz ) .  We claim that x, y, z satisfy either condi t ion (a) or condi t ion (b). 

Assume that Axyz  does not  contain n - t + 1 points o f  P. Label the three arc 
regions bounded  by A x y z  and 4', A, B, and C (see Fig. 1). There must  be at 

y 

Z 

Fig. 1. Set of points divided by Axyz. 
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Fig. 2. New division by Axuy. 

least t + 3  points in A, B, and C. (Note that points x,y, z lie both in Axyz and 
in A u  B u  C )  Some region, A, B, or C, must contain at least I t /3 ]  +2  points. 
Without loss of  generality, assume A, bordered by (xy), does. 

If  B u  C u A x y z  contain fewer than [ t / 3 ] + 2  points, then choose point u~ 
P -  {x, y, z} in region A such that the circle th' through x, y, u is a spanning circle 
of P. (We can find such a point u by minimizing angle xuy over all points other 
than x and y in region A.) Axuy divides circle ~b' into three new regions, A', B', C' 
(see Fig. 2). C '  contains fewer than [ t / 3 ] + 2  points since it is composed of  
regions B, C, and Axyz. A' and B' each contain fewer points than A. Thus, 
f (Axuy)  <f(Axyz) ,  and f (Axyz )  is not minimal, contrary to our assumption. 
Therefore, Bw C u A x y z  must contain at least [ t / 3 ] + 2  points. By Lemma 1 
C(P,x, y) > - [ t / 3 ] + 2 .  [] 

For any set of  convex points, K, any triangle, Axyz, contains exactly three 
points. Setting t equal to n - 3  in Lemma 2, we conclude that there exists an 
x, y ~ K, such that C(K, x, y)>- In /3 ]  + 1. This proves Theorem 1. 

3. The General Case 

We now prove: 

Theorem 2. l l (n)  > - [n/27j  +2.  

It suffices to prove that for n --- 0 mod 27 and any set, P, of n points in the plane, 
there exist two points x, y c P such that C(P, x, y) >-" n/27 + 2. For n ~ i mod 27 
we can delete i points to form a set P '  of  n - i points and find x and y such that 
C(P', x, y) >- (n - i)/27 + 2. It follows that C(P, x, y) >- [n/27j  + 2. 

Neumann-Lara  and Urrutia [2] presented the following lemma which relates 
the intersection of line segments to a property of  circle containment.  
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Lemma 3. I f  line segments ( xy ) and ( uv ) intersect, then either every circle contain- 
ing x and y contains u or v, or every circle containing u and v contains x or y. 

One possible proof follows from Lemma 1 and is left to the reader. We need 
a fourth lemma concerning matchings which follows directly from many well- 
known results in graph theory. 

Lemma 4. Given a bipartite graph of m edges and maximum vertex degree k, there 
exists a matching using Ira~ k ] of the edges. 

Proof. In a bipartite graph, the number of edges in a maximum matching is 
equal to the number of  vertices in a minimum vertex covering [1]. Since each 
vertex has degree k, at least [m/k] vertices are needed to cover m edges. Thus 
the minimum vertex covering has at least [m/k  ] vertices, and there is a matching 
using at least [m/k] edges. [] 

For any collection of  n points, P, where n-= 0 mod 27, we show how to find 
points x, y ~ P such that C(P, x, y)>-n/27 + 2. First, find a line splitting P into 
two sets of  n/3 points and 2n/3 points, respectively. Label the set of  n/3 points St. 

Let P '  be the set of  2n/3 points which are not in $1. Applying Lemma 2 to P' 
with t = n/9, either there exist x, y ~ P'  such that C(P', x, y) >- n / 2 7 + 2  or there 
exist x, y, z ~ P' such that at most n/9 points of  P'  lie outside Axyz. If C ( P', x, y) >- 
n /27+2 ,  then Theorem 2 holds, so assume there exist three points x, y, z~ P' 
such that at most n/9 points of  P'  lie outside Axyz. Place these three points in 
set $2 and place the triangle in set T. 

We repeat this procedure n/9 times, each time letting P'  be the set of  remaining 
points not yet assigned to $1 or $2. For each P'  we either find an x ,y  which 
satisfies Theorem 2, or we find three points x, y, z s P '  such that at most n/9 
points lie outside Axyz. If we satisfy Theorem 2 we are done, so assume we place 
n/3 points in $2 forming n/9 triangles in T. Label the set of  remaining n/3 points 
$3. Each triangle in T was chosen so that at most n/9 of  the remaining points 
lay outside the triangle. Thus, each triangle in T contains at least 2n/9 points 
from S3. 

Connect all the points in S~ to all the points in $3 using n2/9 line segments. 
Each triangle intersects at least 2nZ/27 line segments. Hence there are at least 
2n3/243 intersections between triangle edges and line segments. 

If line segment (xy) intersects line segment (uv) and every circle containing 
points x and y contains u or v, then we say that (xy) dominates (uv). By Lemma 
3, if line segments (xy) and (uv) intersect, then either (xy) dominates (uv) or 
(uv) dominates (xy). 

Either line segments dominate triangle edges n3/243 times or triangle edges 
dominate line segments n3/243 times. Assume the n2/9 line segments dominate 
triangle edge segments n3/243 times. Some line segment, say (xy), dominates at 
least n/27 triangle edges. These n/27 triangle edges come from n/27 distinct 
triangles and must have distinct endpoints. Therefore, any circle containing x 
and y must contain n / 2 7 + 2  points of P. 
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Now, assume the n/3 triangle edges dominate line segments n3/243 times. 
Some triangle edge, say (xy), dominates at least n2/81 line segments. Form the 
bipartite graph with these n2/81 line segments. Each vertex in this graph has 
maximum degree n/3. By Lemma 4 there exists a matching using n/27 edges. 
(xy) dominates n/27 line segments where no two line segments share an endpoint. 
Therefore, any circle containing x and y contains n / 2 7 + 2  points. 

4. Upper Bounds 

In this section we prove: 

Theorem 3. I ] ( n )  <- [ n / 3 ] + l  

and 

Theorem 4. I t(n)-< In /4 ]  + 1. 

To prove Theorem 3 we show how to construct a convex configuration of n 
points K such that for every pair of points u, v c K, C(K,  u, v) <- In~3 ] + 1. Draw 
an equilateral triangle with sides of unit length in the plane and label its vertices 
x, y, and z. ( I f  desired, we can replace edges (xy), (yz), and (zx) with arcs of  
large circles to ensure that no three points are collinear.) Place [n/3J points on 
edge (xy) close to x, In /3]  points on edge (yz) close to y, and [n /3 j  points on 
edge (zx) close to z (see Fig. 3). Distribute any remaining points among the three 
groups. The resulting set of  points K is convex. We leave it to the reader to show 
that through any two points there is a circle containing In /3 ]  + 1 points. 

To prove Theorem 4 we show how to construct general configurations of n 
points P so that for every pair of points u, v~ P, C(P, u, v) < - [ n / 4 ] + l .  Again 
draw an equilateral triangle with sides of  unit length and vertices labeled x, y, 
and z. Let s be the midpoint of edge yz and let r be the midpoint of  edge xy. 
Let w be a point on line (xs) one unit from x and farther from s than from x. 
Place In /4]  of  the points on line segment (xy), [n /4j  points on line segment 
(yz), and [n/4J points on line segment (zx) as before. Place [n/4J of  the points 
on line segment (wr) near w (see Fig. 4). Distribute any remaining points among 
the four groups. We again leave it to the reader to show that through any two 
points there is a circle containing In /4 ]  + 1 points. 

X 

Fig. 3. Convex configuration. 
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w 

z s Y 

Fig. 4. General configuration. 

5. Conclusion 

We have shown that I ] ( n ) =  In /3 ]  + 1. However, exact bounds for H(n)  remain 
open. We feel that our lower bounds are still fairly loose and so we conjecture 
that I I ( n ) -  n/4. We are also interested in algorithms to find x, y ~  K such that 
C(K, x, y)= l ] (n)  and x, y E P such that C(P, x,y)= If(n)  and in algorithms to 
find x, y ~ K which maximize C(K, x, y) and x, y ~ P which maximize C(P, x, y). 
Finally, we note that Schmerl et aL [4] have recently achieved results on the 
generalization of this problem to d-dimensional space. 
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