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Abstract. For some two-player games (e.g. Go), no accurate and inexpensive

heuristic is known for evaluating leaves of a search tree. For other games (e.g.

chess), a heuristic is known (sum of piece values). For other games (e.g. Hex),

only a local heuristic — one that compares children reliably, but non-siblings

poorly — is known (cell voltage drop in the Shannon/Anshelevich electric circuit

model). In this paper we introduce a search algorithm for a two-player perfect

information game with a reasonable local heuristic.

Sibling Conspiracy Number Search (SCNS) is an anytime best-first version of

Conspiracy Number Search based not on evaluation of leaf states of the search

tree, but — for each node — on relative evaluation scores of all children of that

node. SCNS refines CNS search value intervals, converging to Proof Number

Search. SCNS is a good framework for a game player.

We tested SCNS in the domain of Hex, with promising results. We implemented

an 11-by-11 SCNS Hex bot, DeepHex. We competed DeepHex against current

Hex bot champion MoHex, a Monte-Carlo Tree Search player, and previous Hex

bot champion Wolve, an Alpha-Beta Search player. DeepHex widely outperforms

Wolve at all time levels, and narrowly outperforms MoHex once time reaches

4min/move.

We tested the strength of SCNS features: most critical is to initialize leaves via

a multi-step process. Also, we show a simple parallel version of SCNS: it scales

well for 2 threads but less efficiently for 4 or 8 threads.
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1 Introduction

Consider a 2-player perfect information game with no known global heuristic, but with

a reasonable local heuristic evaluation (good at relative scoring of children of a node,

but bad at comparing non-sibling nodes). Suppose you want to build a bot for this game.

What algorithm would you use?

The usual algorithms have drawbacks for a game with only a local heuristic. αβ

Search [20] needs a globally reliable heuristic. Monte-Carlo Tree Search3 [9,8], which

3 MCTS is a non-uniform best-first search that uses random simulations to evaluate leaves.

Strong moves are exploited; weak moves are explored only if a visit threshold — based on

an exploitation/exploration formula such as Upper Confidence Bound [21] — is crossed.



uses random simulations, needs no heuristic but can be slow to converge. Proof-Number

Search4 [2] performs well as a solver, particularly on search trees with non-uniform

branching, but can be weak as a player, especially early in games with search trees with

almost uniform branching.

In this paper we introduce Sibling Conspiracy Number Search, an algorithm for a

two-player perfect information game with a reasonable local heuristic. SCNS is based

on Conspiracy-Number Search [25,26], which generalizes PNS: in PNS, each search

tree leaf score is −1 or 1, while in CNS a leaf score can have any value — e.g. any

floating point value in the range from −1 to 1 — that indicates an associated final game

score. For a node in a search tree and a target minimax value, the conspiracy number is

the minimum number of leaves whose evaluations must change in order for the node’s

minimax score to reach the target. CNS expands leaves in an order that is based on

conspiracy numbers. SCNS combines features of MCTS (anytime, best-first) and PNS

(strong tactically, approaching perfect play near the end of a game). We will explain

CNS and SCNS in further detail later.

Hex has a reliable local heuristic5, so we pick 11×11 Hex as our test domain. We

ran DeepHex, our SCNS Hex bot, against an MCTS player (current champion MoHex)

and an αβ player (previous champion Wolve) [4,14]. DeepHex outperforms Wolve at

all time levels, and outperforms MoHex once time reaches 4min/move.

Next, we measure the relative contribution of the feature enhancements of our SCNS

Hex bot, and measure the performance of a parallel implementation.

2 Conspiracy Number Search

In 2-player game search, CNS has shown promise in chess [35,34,19,24,23,27] and

shogi [17]. CNS can be viewed as a generalization of PNS, which is how we will de-

scribe our implementation.

2.1 Proof Number Search

Definition 1. Each node n has a proof number (pn) pn and disproof number (dn) dn.

A node’s (dis)proof number is the smallest number of descendant leaves that, if all true

(false), would make the node true (false)6.

4 PNS is used in and/or trees (i.e. each leaf has minimax value ±1) and is guided by proof and

disproof numbers (for each node, the smallest number of descendant leaves that need be 1,

resp. −1, for the node to have value 1, resp. -1).
5 Shannon built an analogue circuit to play the connection game Bridg-it, with moves scored

by voltage drop [12]. Adding links between virtual connected cells [3] improves the heuristic,

which although erratic between non-sibling states is reliable among siblings [15]. So we use

this heuristic for our Hex SCNS bot.
6 In PNS, a leaf node with value true indicates that the search goal is reached. Usually the search

goal is to determine the game win/loss value, but it could be any desired search goal, e.g. in

chess indicating the capture of a queen, or that the game ends in a win or draw but not a loss.
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Fact 1. If a node n is a leaf then

pn = 1 dn = 1 if n is non-terminal

pn = 0 dn = +∞ if n is true

pn = +∞ dn = 0 if n is false,

(1)

otherwise

pn = min
s∈children(n)

ps, dn =
∑

s∈children(n)

ds if n is or-node

pn =
∑

s∈children(n)

ps, dn = min
s∈children(n)

ds if n is and-node.
(2)

Definition 2. A most proving node (mpn) is a leaf whose proof will reduce the root’s

proof number and whose disproof will reduce the root’s disproof number.

PNS iteratively selects a most proving leaf and expands it. See Algorithms 1 and 2.

Algorithm 1 Proof number search

1: function PNS(root)

2: while not root solved do

3: n← SELECTMPN(root)
4: Expand n and initiate new children by (1)

5: Update nodes along path to the root using (2)

Algorithm 2 Proof number search — Selection of mpn

1: function SELECTMPN(n)

2: if n is leaf then

3: return n

4: else if n is or-node then

5: return SELECTMPN( argmin
s∈children(n)

ps)

6: else ⊲ n is and-node

7: return SELECTMPN( argmin
s∈children(n)

ds)

2.2 Minimax value

PNS is used in two-player zero-sum games. One player is us, the other is them or op-

ponent. Value true (false) is a win for us (them). We (they) move at an or-node (and-

node). PNS is hard to guide with an evaluation function, as leaves have only two pos-

sible game values (i.e. minimax outcomes) [1,7,28,36,33,37,18]. One can extend PNS
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by allowing a leaf to have any rational value, with +(−)∞ for win(loss). If a leaf is

terminal, its value is the actual game value; if not terminal, its value can be assigned

heuristically. We (they) want to maximize (minimize) value. A node from which we

(they) move is a max-node (min-node). Internal node values are computed in minimax

fashion. MINIMAX(n) denotes the minimax value of node n. Value is computed in min-

imax fashion as follows, where EVAL(n) is given by a heuristic (actual) value if n is

non-terminal (terminal) [22]:

MINIMAX(n) =



















EVAL(n) if n is leaf,

max
s∈children(n)

MINIMAX(s) if n is max-node

min
s∈children(n)

MINIMAX(s) if n is min-node.

(3)

2.3 Replacing numbers by functions

PNS is computed using the two final values (true/false) and a temporary value (un-

known) assigned to non-terminal leaves. The (dis)proof number is the number of nodes

whose values need to change from unknown to true (false). Rather than numbers, we use

functions to represent the extended set of values denoted by V = {−∞}∪R∪ {+∞}.

The simplest possible representation of (value, proof number) — and similarly for

(value, disproof number) — pairs for each node would be using a map f from value to

to proof number, i.e. for each possible value v which can be output by the evaluation

function, there would be an entry in the map f , with f(v) giving the proof number.

However, such a representation is feasible only if the the evaluation function has a

finite and small number of possible outcomes. That is not the case here, so we will need

a different representation, as we explain below. The idea is to represent this set with a

step function with a finite number of steps, so the set can be represented with an array

with a finite number of entries.

Definition 3. The function pn : V 7→ N0 = {0, 1, 2, . . .} is a proof function if, for

all v ∈ V, pn(v) is the minimum number of leaves in the subtree rooted at n that must

change value so that MINIMAX(n) ≥ v. Similarly, dn : V 7→ N0 is a disproof function

if, for all v ∈ V, dn(v) is the minimum number of leaves in the subtree rooted at n that

must change value so that MINIMAX(n) ≤ v.

Rather than storing (dis)proof numbers at each node, we store (dis)proof functions,

computed recursively.

Fact 2. If n is a leaf and x = EVAL(n) then

pn(v) =











0 if v ≤ x

1 if v > x and n is non-terminal

+∞ if v > x and n is terminal,

dn(v) =











0 if v ≥ x

1 if v < x and n is non-terminal

+∞ if v < x and n is terminal,

(4)
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otherwise, for every v ∈ V,

pn(v) = min
s∈children(n)

ps(v), dn(v) =
∑

s∈children(n)

ds(v) if n is or-node,

pn(v) =
∑

s∈children(n)

ps(v), dn(v) = min
s∈children(n)

ds(v) if n is and-node.
(5)

(Dis)Proof functions can be propagated up from leaves by Fact 2. One way to rep-

resent such a function f is as an array of all possible values f(v) for each v.

2.4 Proof and disproof function properties

Fact 3. For each node n

(i) pn is a non-decreasing staircase function, and

dn is a non-increasing staircase function.

(ii) MINIMAX(n) is the meet point of pn and dn, i.e.:

pn(v) = 0, dn(v) > 0 for v < MINIMAX(n),

pn(v) = 0, dn(v) = 0 for v = MINIMAX(n),

pn(v) > 0, dn(v) = 0 for v > MINIMAX(n).

See Figure 1. Following McAllester, the conspiracy number CNn(v) = pn(v) +

−∞ MINIMAX(n) +∞

0

1

2

3

4

5

v

p
n
(v
),
d
n
(v
)

pn

dn

Fig. 1. Each proof function pn (solid segments) and disproof function dn (dashed segments) is

monotonic staircase. Each black dot belongs to its segment (i.e. closed endpoint), each white dot

does not (i.e. open endpoint). The intersection of pn and dn is the single point (MINIMAX(n), 0).

dn(v) is the smallest number of leaves (called conspirators) whose values must change

for the minimax value of n to reach v. CNn(v) = 0 iff v = MINIMAX(n).

2.5 Node expansion

Our implementation of CNS follows PNS: iteratively select and expand a most proving

node (mpn) and then update (dis)proof functions on the path to the root. So we define a

CNS mpn.
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Let vroot = MINIMAX(root). Choose target values vmax for Max (the max player)

and vmin for Min so that vmin < vroot < vmax. We explain how to do this in §2.6. We

call [vmin, vmax] the search value interval or search interval.7 For fixed vmax and vmin,

we say that Max (Min) wins if value vmax (vmin) is reached. To find a mpn we use

SELECTMPN(root), with pn pn(vmax) and dn dn(vmin) for every node n. Our CNS

implementation — Algorithm 3 — differs from that of McAllester, as we alter both

sides of the search interval at once.

Algorithm 3 Conspiracy number search

1: function CNS(root)

2: while not reached time limit do

3: SETINTERVAL ⊲ Set vmax and vmin

4: n← SELECTMPN(root)
5: Expand n and initiate new children by (4)

6: Update nodes along path to the root using (5)

7: function SELECTMPN(n)

8: if n is leaf then

9: return n

10: else if n is max-node then

11: return SELECTMPN( argmin
s∈children(n)

ps(vmax))

12: else ⊲ n is min-node

13: return SELECTMPN( argmin
s∈children(n)

ds(vmin))

2.6 Choosing the search interval

One way to pick the search interval is to set vmax and vmin a fixed difference from

MINIMAX(root), denoted vroot,

vmax = vroot + δp,

vmin = vroot − δd,
(6)

where δp and δd are possibly equal constants. But it can help to modify the interval

during search, e.g. by adjusting according to the root (dis)proof value,

vmax = max
v∈V

{v : proot(v) ≤ Pmax},

vmin = min
v∈V

{v : droot(v) ≤ Dmax},
(7)

where Pmax and Dmax are possibly equal constants. This approach was used in the

original CNS algorithm [26,19]. Search proceeds until the interval is sufficiently small,

i.e. vmax − vmin ≤ ∆, where ∆ is a constant indicating an acceptable error tolerance.

7 This is the current likely range of the final root minimax value. It is analogous to the aspiration

window of αβ search.
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This method does not always converge, e.g. when the search is close to solving a

position, or — if thresholds are too small — when the search stumbles into a stable

position; in such cases it is better to increase thresholds and resume the search. Our

approach below mixes (6) and (7). Notice that (8) generalizes (7), and also (6) if Pmax

or Dmax = 0.

vmax = max
v∈V

{v : proot(v) ≤ max(proot(vroot + δp), Pmax)},

vmin = min
v∈V

{v : droot(v) ≤ max(droot(vroot − δd), Dmax)}.
(8)

2.7 Choosing the best move

To use CNS as a player, we run the search until error tolerance is reached or time runs

out and then pick the best move. But which move is best? In MCTS, there are two usual

candidates for move selection: 1) the move with the best win rate, or 2) the move on

which most time — leaf expansions in its subtree — has been spent. Depending on the

MCTS domain, either criterion can be preferred. Here, we cannot use 1), since there is

no known good heuristic.8 So we have 2) or a third candidate, namely 3) some form

of minimax search. We experimented with forms of 3), including that of [23], but all

performed much worse than 2).

One problem with 2) is when the effective search depth is insufficient to reveal the

strength of the best move. Here CNS can choose a move before adequately exploring

others. We remedy this problem in SCNS (§3).

2.8 Efficient storage of proof function

If the granularity of an evaluation function is high then an array indexed by all possible

function values takes much space. One fix is to bucket function values, but this worked

poorly for us. Instead, we exploit the staircase nature of the (dis)proof functions, storing

only the stair steps. Each step is represented by a number pair: a rational — step width

(minimax value range), and an integer — step height (conspiracy number range). To

store a leaf’s proof function leaf we need only one pair. The size (in steps) of an internal

node’s proof function is at most the sum of the sizes of its children’s proof functions.

So proof functions for nodes near the tree bottom are small, and total proof function

storage is proportional to tree size.

We implement CNS in depth-first fashion (See §3.5) using recursion and a trans-

position table, so over time unimportant states are dropped from memory and most

remaining nodes have multi-step proof functions. So we need to further reduce proof

function storage.

For proof function f with |f(v1) − f(v2)| small, merging the steps for v1 and v2
has little impact on performance. So we approximate step height:

Definition 4. The upper bound approximation f̂ of f with parameter η ∈ (0, 1) is

defined as

f̂(v) = max
v′∈V

{f(v′) : f(v)(1 + η) ≥ f(v′)}. (9)

8 Experiments showed the circuit resistance heuristic to be weak.
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f̂ approximates f via a sequence of steps, each differing slightly from its successor.

E.g. for η = 0.01, steps of height 100 and 101 are merged as a step of height 101.

This introduces little error, especially for games with transpositions: in such games, the

directed acyclic graph of the state space (so nodes are states, and a state is a child of

another if it can be reached by a legal move from that state) is often approximated by a

game tree, so high proof numbers are already less accurate than low ones. So it is often

not necessary to distinguish between large but close proof numbers.

Lemma 1. For two consecutive steps of f̂ with heights p1 < p2, p1(1 + η) < p2.

Theorem 1. The number of steps of f̂ is at most O(log p), where p is the maximum

proof number, i.e. p = f(+∞).

Proof. For any base b, the number of steps is at most

log1+η p =
logb p

logb(1 + η)
≈

1

η
logb p = O(log p).

This approximation works well with η as large as .25: e.g., if proof numbers oscillate

around 1000, the number of steps is then (at most) around 25.

3 Sibling CNS

We convert a local heuristic — one that reliably scores relative strengths of siblings —

into a global heuristic useful for our CNS player.

Definition 5. Let n be a node. For every child s of n, let E(n → s) be the score —

positive and rational — of the move from n to s. Let s0 be the best child score, i.e.

s0 = argmax
s∈children(n)

E(n → s). (10)

Define the relative error e(n → s) of s as

e(n → s) = log
E(n → s0)

E(n → s)
. (11)

So e(n → s) = 0 if s is as strong as the best move, otherwise e(n → s) > 0.

This relative error measures divergence from optimal play. Now we have our evaluation

function.

Definition 6. Let n be the game tree node found by descending from the root by the

path

root = p0 → p1 → · · · → pk = n. (12)

Also, let

σ(pi) =

{

−1 if we are to move in pi

1 if the opponent is to move in pi.
(13)
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Then the evaluation of a non-terminal node n is defined as

EVAL(n) =
k

∑

i=1

σ(pi−1) · e(pi−1 → pi) (14)

We call this siblings comparison evaluation function (SCEF).

Consider SCEF when applied to CNS with a small search interval. Set Pmax =
Dmax = 1 and use (7) to set the search interval (vmin, vmax). Then CNS works as

follows. First, CNS follows the path, say π0, from root to a terminal state via moves
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Fig. 2. The first few steps of SCNS.

with error zero (best possible). Along the way, it expands all siblings of nodes on π0.

Assume that the terminal node, say α, wins for us. Then CNS searches for a child c0
of an opponent node from π0 with smallest possible error e0, and the search branches

from c0. From c0 it follows a path π1 using moves with error zero until it reaches a

terminal node; again siblings of all encountered nodes are expanded. Now assume that

this terminal node, say β, is a loss for us. Then CNS tries to diverge from the current

terminal path, either before c0 on π0, or at or after c0 on π1. CNS tries to find a child

of one of our nodes with the smallest error e1 or, if this is on π1, with smallest error

e1 − e0. See Figure 2.

Generally, CNS constructs paths to terminal nodes, and then branches so that the

player for whom the terminal node was losing tries to find another response in a sub-

tree minimizing the cumulative error. So, the player tries to fall back on another most

promising move of the entire tree.

This behaviour seems close to that of humans, who often follow the best line until

finding it bad for one player, at which point they seek a deviation helping that player.
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So CNS with SCEF is SCNS — Sibling Conspiracy Number Search. Experiments

show that SCNS works well. It often explores deep lines of play, dealing well with long

forcing sequences (ladders), while still widening the game tree by the most promising

moves.

3.1 SCEF and minimax

To better understand SCEF, consider how minimax search would behave using SCEF to

evaluate leaf nodes. Consider a minimax search that fails to reach any terminal position,

e.g. any search early in the game. Consider the principle variation, i.e. the path that

starts at the root and follows moves with relative error 0. If one player deviates from

the principle variation by a move with positive relative error, then from that point the

opponent can always follow moves with relative error 0, giving the player a negative

score. So for this search, the minimax value is 0 and a best move is any root move with

relative error 0.

So it might not be useful to use SCEF inside any variation of minimax, e.g. αβ

search, as this would result in simply picking depth-0 best moves until perhaps the

middle of the game, by which point any reasonable opponent would presumably have a

crushing advantage.

3.2 Avoiding unpromising sibling expansion

Although SCNS explores good lines of play, the version we have described so far is

wasteful, as it expands all siblings whenever a new child is expanded. Let us explain

why. In Algorithm 3, when function SELECTMPN arrives at a max-node n whose chil-

dren are all leaves, then pn(vmax) = 1 and the same holds for all n’s children. This is

because leaf (dis)proof functions are initialized by (4). See Figure 3. Now SELECTMPN

root

[vmin, vmax]

n pn(vmax) = 1

SELECTMPN

ps1(vmax) = 1 ps2(vmax) = 1 ps3(vmax) = 1
s1 s2 s3

e1 =
0

e2
e3

Fig. 3. Illustration of the effect of siblings expansion.

can call any child. The best option is to call the child with smallest move error. Here s1
is best if error e1 = 0. Now, even if s1 is expanded, pn(vmax) will not change because

136



of the other children, so remains 1. Thus the next leaf to be expanded will be one of

n’s remaining children. Notice that at this moment SCNS does not distinguish among

children si, i = 1, 2, 3, even if their evaluations EVAL(si) vary. This is a drawback of

CNS in general.

To avoid this unnecessary expansion, especially for unpromising children with rel-

atively high move error, we encode extra information in the (dis)proof function when

creating a leaf. If a move has high error compared to its best sibling, then to increase

the minimax value of this move by this error will likely require many expansions. So,

rather than initializing (dis)proof functions in two steps (4), we use a more complicated

initialization process whose number of steps is logarithmic in the difference of a value

from the minimax value. Hence

pn(v) =

{

0 if v ≤ x

i if iδ < 2(v−x) ≤ (i+ 1)δ

dn(v) =

{

0 if v ≥ x

i if iδ < 2(x−v) ≤ (i+ 1)δ

(15)

where x = MINIMAX(n), i is a positive integer and δ a positive rational. See Figure

4. Using (15) to initialize non-terminal leafs, SCNS expands only siblings whose score

−
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Fig. 4. Proof function pn for leaf.

diverges from that of the best sibling by at most δ. Depending on how values shift

during search, other (weaker) siblings might be expanded if the minimax value changes

by more than δ. With this modification, SCNS’s search behaviour is now closer to that

of the human-like behaviour described above.
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3.3 Gradual forgetting of an error

While cell energy is effective in SCEF as a move’s error estimate, it can assign a falsely

high error to a good move. If SCNS spends much work9 at such a move the initial error

estimate should be corrected. We gradually decrease error as follows,

e′(n → s) = e(n → s) ·max
(

1−
ws

Wmax
, 0
)

, (16)

where ws is work done at s, Wmax is a constant parameter measuring the amount of

work after which error should be zero, and e′(n → s) is the adjusted error estimate.

3.4 Adding RAVE statistics

One strength of MCTS bots, especially for games in which stones do not move, such as

Go or Hex, is their enhancement of move strength by the Rapid Action Value Estimate,

an all-moves-as-first statistic [13]. So we added RAVE to SCNS. With each node we

store a map from possible moves (cells) to the RAVE statistic, which consists of two

integers: RAVE wins and losses. Statistics are updated whenever a terminal node is

created by leaf expansion: for each node on the path from root to the node, we update

RAVE values for each move played on the rest of the path.

Assume for the move n → s we have the RAVE win-loss statistic (wR, lR) of the

player to move. Denote the number of RAVE games as gR = wR + lR. We modify

move error:

e′(n → s) = (1− α) · e(n → s) + α ·Rimpacte
R(n → s), (17)

where α indicates how quickly we shift into RAVE error

α =

√

gR(n → s)

3Rshift + gR(n → s)
, (18)

eR(n → s) is a move error computed by RAVE

eR(n → s) = erf−1

(

lR(n → s)− wR(n → s)

gR(n → s) + 1

)

, (19)

erf−1 is inverse error function, and Rshift and Rimpact are constant parameters which

indicate how quickly we shift to RAVE error and the impact of RAVE error respectively.

RAVE encourages (discourages) moves that are more often involved in winning

(losing) lines and gradually diminishes information from cell energy. SCNS often reaches

terminal nodes, so RAVE values accumulate quickly. RAVE can be combined with grad-

ual error forgetting by applying (16) on top of (17).

9 We measure work done at a node as the number of node expansions in the subtree rooted at

that node.
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3.5 Transposition table and depth-first implementation

PNS assumes (often incorrectly) that the complete tree can be stored in memory. The

DFPNS algorithm overcomes this restriction via a depth-first implementation and trans-

position table [28]. A DFPNS enhancement — the 1+ε method — reduces the tendency

of the search to jump around the tree [32]. The resulting algorithm is stronger than PNS

and returns to the root only rarely [28,32].

We apply these three enhancements to CNS. Again, search rarely returns to the root,

so updates to the search interval [vmin, vmax] are infrequent. It may even happen that

search stays too long in one subtree, in which case we want to force the search back to

the root after a few expansions (so, small amount of work) in order to refine the interval.

A parameter for this is set according to the time-per-move setting. We tuned it for single

setup (See §4.6, parameter MaxWorkPerJob), however it could be increased with higher

time constraints.

3.6 Parallel SCNS

Our approach10 is to mimic the parallelization of DFPN [31]: use a quick thread as-

signment that follows the natural CNS order, and halt thread execution once its task

is redundant. This is achieved by using virtual wins and losses, and temporarily halt-

ing thread execution — returning the uncompleted portion of thread’s task to the thread

pool — once the thread has made MaxWorkPerJob recursive calls. So our parallel SCNS

works as follows. See [31] for more details.

1. Replace (dis)proof numbers by (dis)proof functions: each operation — leaf initial-

ization, node update, . . . — is now done via (dis)proof functions.

2. Whenever search visits the root, set vmax and vmin.

3. Navigate the search tree as in DFPNS, but with (dis)proof numbers pn(vmax) and

dn(vmin) until search returns to the root.

4. Give each thread its own search interval, based on virtual (dis)proof functions.

4 Experimental Results

Using parallel SCNS, we implemented the Hex bot DeepHex on the Benzene frame-

work [6]. Benzene includes virtual connection and cell energy computations, so as local

SCNS heuristic we used the energy drop at each cell as described in §1.

We used two bots as opponents: Wolve and MoHex, each also implemented on

Benzene. Wolve uses αβ Search with max-width pruning, with circuit resistance for

heuristic. MoHex — the strongest Hex bot since 2009 — uses MCTS with RAVE,

patterns, prior knowledge estimation, progressive bias, and CLOP tuning of parameters

[16]. Wolve and MoHex both compute virtual connections that prune moves and solve

positions long before the game ends.

10 Another approach is to dynamically partition the CNS tree and evaluate subproblems in paral-

lel. Lorenz achieved this for the restriction of CNS to 2 conpirators, i.e. effectively bounding

proof function numbers at 2 [23].
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We ran all experiments on the 11×11 board. For openings, we used 36 relatively

balanced single stone openings: a2 to k2, a10 to k10, b1 to j1, and b11 to j11.

First we optimized parameters using CLOP (§4.1). Then we ran a knockout experi-

ment to show feature importance (§4.2). Next we ran two tournaments: the first one is

with several single-threaded bot versions and time limits (§4.3) and in the second one we

allowed multi-threading to show how strength increases with number of threads (§4.4).

Then we ran a DeepHex vs. MoHex tournament at competition settings (§4.5). Because

results of multi-threaded tournaments were disappointed we additionally run parameter

optimization using CLOP for multi-threaded version to see if they differ (§4.6). Finally,

we give some comments on public games played by DeepHex (§4.7).

4.1 Parameter optimization by CLOP

We optimized parameters using CLOP [11]. In the tuning process we played 30s games,

used MoHex as the reference opponent, and set the root-interlude (maximum number

of node expansions before search must return to the root) to 20. The final parameter

settings are based on 30 000 games. Figure 5 shows that CLOP has already found good

settings after 20 000 games.
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Fig. 5. Win rate with 95% lower and upper confidence bound of the best parameters found by

CLOP after playing the given number of games.

DeepHex won .45 of these CLOP-tuning games. The estimated win rate using the

best set of parameters is .59. The final settings are shown in Table 1.

The final CLOP-tuned values hint at the effect of the various parameters. δ measures

the urgency of sibling expansion: 103 seems small, as moves become easily distinguish-

able with δ about 300.
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parameter value description

ε 0.41 ε tolerance

η 0.30 allowed relative error of numbers in proof function

δ 103 the end of the first step in leaf initialization

Pmax 3 proof threshold when setting vmax

Dmax 4 disproof threshold when setting vmin

δp 8 extending the search interval on max side

δd 7 extending the search interval on min side

Rshift 211 RAVE error shift factor

Rimpact 782 impact of RAVE error

Wmax 1824 error forgetting threshold

Table 1. Parameters tuned by CLOP for DeepHex.

Pmax and Dmax are also small, so DeepHex prefers exploring promising lines

deeply before diverging. A hand-tuned version of DeepHex with Pmax = Dmax = 1
was strong, so we expected these CLOP-tuned values to be close to 1. The CLOP values

3,4 suggest that for DeepHex the best CNS behaviour is not far from that of PNS. The

CLOP values show that optionally extending the search interval by δp, δd is practically

useless, since values 8,7 have negligible effect on performance.

Surprisingly, the RAVE impact is small. We guessed it would be important to in-

corporate the outcome of terminal nodes quickly, but values 211,782 show this is better

done slowly. A similar conlusion holds for gradual error forgetting.

4.2 Knockout experiment

Here we measure feature importance and accuracy of CLOP tuning. We tested many

versions of DeepHex, each with either a feature off or a parameter slightly changed.

For each version we played 720 matches against MoHex (10 times for each opening) at

30s/move and then — to measure scaling — at 60s/move. See Table 2.

As expected, at 30s/move the CLOP-tuned version is strongest. The most critical

feature is better leaf initialization via the multi-step proof function. RAVE is beneficial

at 30s/move but less so at 60s/move. This behaviour can be result of too deterministic

play of DeepHex with fixed time settings. However, the parameter values are confirmed

by another tuning using CLOP in §4.6.

Our goal here was to use CLOP to find — within a relatively short period of time

— a reasonable tuning for 30s/move. Given more time, to find a tuning that works well

over wide range of time settings, it would have been better to use randomly selected

time settings for CLOP instances (as in §4.6). It would also be better to use more than

one opponent during CLOP tuning, but we are not aware of any other non-deterministic

Hex bots that are comparable in strength to MoHex.

4.3 Strength increase with time constraints

To measure the effect of time constraints on playing strength we ran a round-robin

tournament. For DeepHex we used the parameter settings found in §4.1. For each bot,
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id version 30s 60s

(base) CLOP tuned 60.0 52.6

(a) 2-step (dis)proof function in leafs 20.3 23.1
(b) no 1 + ε method (ε = 0) 57.5 50.6
(c) exact proof functions (η = 0) 56.1 48.9
(d) no gradual error forgetting 56.7 51.9
(e) no rave 51.9 57.5
(f) pure SCEF 52.4 55.6
(g) Pmax = Dmax = 1 52.1 52.5
(h) Pmax = Dmax = 1 and δp = δd = 50 59.4 51.5
(i) Pmax = Dmax = 5 56.0 53.9

Table 2. Knockout experiment results showing win percentage over MoHex by differ settings in

DeepHex. Every winning percentage has ±2.4% confidence bound with 80% confidence. The

DeepHex versions are: (base) all features, all parameters with CLOP settings, (a) basic leaf ini-

tialization, (b) 1 + ε method off, (c) exact proof functions (approximation off), (d) gradual error

forgetting off, (e) RAVE off, (f) gradual error forgetting and RAVE both off, (g) smallest possible

thresholds inducing smaller search interval, (h) as in (g) but extending search interval to at least

100 on each side, (i) larger thresholds for setting the search interval.

we ran 5 versions, one each with time limit 30s, 1m, 2m, 4m, and 8m per move. Thus

there were 15 bot competitors in the tournament. Each version played each other version

two times on each opening, once as black (1st-player) and once as white (2nd-player).

So each version played 1008 of the 7560 tournament games. The results are scored by

BayesElo [10] in Figure 6.

Overall, DeepHex is similar in strength to MoHex. With short time per move, Deep-

Hex is weaker. But this strength gap decreases with time, with DeepHex 12 Elo ahead

at 4m/move (although error is up to 14 Elo with 80% confidence) and 20 Elo ahead at

8m/move. This perhaps shows SCNS adapting more quickly than MCTS to new lines of

play. Also, MoHex use its knowledge computations (virtual connections) to shape the

growth of its tree, while SCNS does not. Without this optimization MoHex’s strength

deteriorates more quickly [5].

Figure 7 shows an 8m/move win of DeepHex over MoHex. MoHex — with steady

early play — reaches a winning position. But DeepHex recognizes the situation before

MoHex, and quickly takes advantage once MoHex blunders.

4.4 Multi-threaded tournament

Here we show how program strength scales with number of threads. 13 bots competed:

1,2,4,8-thread DeepHex; 1,2,4,8-thread MoHex; 1,3,7-thread MoHex plus 1 thread for

solver; 1-thread Wolve; 1-thread Wolve plus 1 thread for solver. In each game each

bot had 30s/move. Each bot played each other bot two times on each opening, once as

black (1st-player) and once as white (2nd-player). So each bot played 864 of the 5616

tournament games.

Figure 8 shows tournament results. Scores are BayesElo [10] with respect to refer-

ence player Wolve (win rate .31, score 0); Wolve and Wolve+solver (score 23) are not
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Fig. 6. Tournament results. Each point has error within 14 Elo, with 80% confidence.

shown. MoHex scales well up to the maximum 8 threads; this is perhaps not surprising,

as MCTS strength typically increases uniformly with number of simulations and paral-

lelizes relatively easily. MoHex+solver scales well up to 4 threads, but is only slightly

stronger at 8 threads. The latter is perhaps because, with solver effectively taking over

end games, the difference in opening play between 3-thread MoHex and 7-thread Mo-

Hex is not enough to change many outcomes.

DeepHex scales as well as MoHex up to 2 threads, but then more poorly. This drop

in scaling efficiency is more pronounced than a similar drop in scaling efficiency of

parallel DFPN [31], perhaps due to overfitting (i.e. training only single-threaded, only

30s/move, and only against MoHex), and perhaps because the method we used to par-

allelize CNS — prevent search tree thread convergence via virtual wins and losses —

works better in PNS than in CNS. More research is needed to explore this drop in scal-

ing efficiency.

4.5 DeepHex versus MoHex

Here we simulated a competition tournament on a 12-thread machine. MoHex used its

strongest settings: 1 thread for its DFPNS solver and 11 for MCTS. DeepHex does not

yet have game-length time control; in almost all games, each bot knows the winner

before its 20th move, so we allowed DeepHex (30/20) m/move = 90 s/move.

We played a first tournament using DeepHex settings found by CLOP tuning. How-

ever, §4.2 results suggest that — as thinking time increases — Pmax and Dmax should

increase and RAVE weight should decrease. So, we played a second tournament with

parameters as in Table 3.

Each tournament had 9 rounds. In each round, each bot played 72 games, i.e. 2

games per opening — once as black (1st-player), once as white (2nd-player) — for a
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Fig. 7. An 8min/move DeepHex (Black) win over MoHex. With 26.i4 MoHex has winrate .51

and PV a10 g3 g4 f4 a8 c7 d5 d4 a6 a5 b5 c5 e4 f2 i3 i2 j3 a11 f5 h3 h4 h9 g9 d10 e9 e10. With

27.a10 DeepHex finds a loss – unproven due to pruning – with PV f4 h4 h5 g4 f5 b8 d5 a6 a5 b5

a11 b10 b11 c10 c11 d10 c3 b4 b2 i3 j3 e4 e5 c2 b3. But MoHex blunders with 28.g3: winrate is

.52 but DeepHex sees a huge advantage. With 33.c6 DeepHex finds a proven win, PV d1 d4 e3

d2 e10 b11 c2 d3 e1 e2 f1 f2 g1 g2 h1 h2 i1 b2 b3 a3 b4 a5 b6 b5 c5 c4 d5 f5. By 38.c11 MoHex

finds a proven loss.

parameter value

Pmax 6

Dmax 8

δp 50

δd 50

Rshift 500

Rimpact 500

Table 3. Hand selected parameters for the second tournament.

total of 648 games. DeepHex had a .448 (.457) win rate in the first (second) tournament.

So perhaps CLOP tuning is most effective with shorter time limits or as a starting point;

for longer time limits or more than one thread hand tuning, especially for parameters

such as search interval or RAVE weight, might be more effective.

Under tournament conditions MoHex seems stronger in early play but DeepHex

sees further in complicated positions. Figure 9 shows a typical game, where MoHex

pushes DeepHex into a losing position before DeepHex escapes.

In the first tournament the average game length for a MoHex (DeepHex) win is 48.6

(61.2) moves, while in the second it is slightly longer 49.6 (62.1). MoHex wins almost

all short games, DeepHex wins almost all long ones. See Table 4. MoHex seems strate-

gically stronger, often — perhaps because it is ahead — making simplifying moves.

DeepHex seems tactically further-sighted, often — perhaps because it is behind —

making complicated moves. A research challenge is to mix these two behaviours.

On an 11×11 board, the shortest possible win would be 21 moves: 11 for the 1st

player and 10 for the second. So any game that is less than around 30 moves long prob-
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player is 1-thread Wolve, BayesElo score 0.

length 26-40 41-50 51-60 61-70 71-80 81-95

1st tournament .04 / 75 .20 / 186 .52 / 195 .73 / 128 .83 / 59 1.00 / 5

2nd tournament .03 / 62 .21 / 166 .46 / 213 .75 / 145 .89 / 53 .89 / 9

Table 4. DeepHex win rate / the number of games by game length.

ably indicates a weak move the part of the loser. Also, the virtual connection module

(VCM) that is common to both MoHex and DeepHex is strong, so weak moves are

usually punished when a winning move is found soon after.

For example, consider the 26-move game in Figure 10, the shortest in our exper-

iments. Postgame analysis with an endgame solver shows that in fact move 13.Bj2 is

losing. During the experiment, after move 14 the VCM finds quickly that all but sixteen

moves are losing, but cannot solve the state in the time allotted; then, after move 15, the

VCM finds quickly that 16.Wa4 wins.

Figure 10 also shows the 74-move variation after move 12 that occurs with 60s/move

MoHex self-play, where instead of 13.Bj2 MoHex plays 13.Bj4. Here Black loses again,

but more slowly, so perhaps Black is already losing after move 11, in which case move

13 is not a blunder. In any event, this game shows that against MoHex a weak move can

lead quickly to a loss.

4.6 Multi-threaded parameter optimization with CLOP

The performance of multi-threaded DeepHex using the CLOP optimization settings

found with 1-thread tuning yielded disappointing results (§4.1), so we retuned with

more threads. This time we ran 4-thread DeepHex against the most powerful 4-thread
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Fig. 9. DeepHex (Black) escapes against MoHex. After 26.j5 DeepHex sees its loss with PV i6
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neither this nor its win after 28.h6 and blunders with 30.h11 instead of i10. After 60s of search
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Fig. 10. Left: the shortest game in our experiments. Right: starting after 12.Wb9, the variation

found by 60s/move MoHex self-play.

version of MoHex: 3 MCTS threads and 1 solver thread. In the tuning we also added

another parameter to optimize: MaxWorkPerJob. This parameter controls how often a

thread breaks the search in order to refine the search interval and find a new subtree

to work on. Smaller values of MaxWorkPerJob yield more efficient parallelization: the

search is partitioned more evenly but has higher communication costs. For each game,

time per move was selected uniformly randomly in the interval [30, 40] seconds. In this

way we hoped to reduce overtuning the deterministic DeepHex.

In this experiment we played 35 000 games. See Figure 11. Table 5 shows the final

selection of best parameters, yielding estimated win rate .64. Although the learning has

not yet converged well after 35 000 games, most parameters have value close to that

found when tuning with 1 thread (Table 1). So it is possible that the values are close to

optimal; further testing would be needed to confirm this.
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Fig. 11. Win rate with 95% lower and upper confidence bound of the best parameters found by

CLOP after playing the given number of games.

Let us compare parameter values here to those of Table 1. Only Wmax is higher,

which may indicate that we do not need to discard an initial heuristic error from cell

energy in order to focus on the most promising moves. A multi-threaded search tends

to explore more than a single-threaded one, so the higher value of Wmax is expected.

The value of MaxWorkPerJob is relatively small, introducing some communication cost

between threads, so perhaps the nature of SCNS is such that it is relatively stronger

when single-threaded than when multi-threaded. Further research is needed to explore

this.

4.7 Public tournaments

DeepHex, MoHex, and a third program Ezo by Kei Takada and Masahito Yamamoto

competed in the two computer Hex tournaments — 11×11 and 13×13 — in the 2015

International Computer Game Association’s Computer Games Olympiad in Tilburg,

Netherlands. In these tournaments MoHex narrowly defeated DeepHex for first place,

with a head to head record of 3-1 on 11×11 and 4-2 (the last 2 games were a playoff) on

13×13. This tournament confirmed our opinion that MoHex and DeepHex are evenly

matched but with different styles: MoHex seems a bit stronger in opening and early

middle play, but its Monte Carlo simulations cannot handle tactical positions. By con-

trast DeepHex thrives on tactical positions and in complicated positions is particularly

strong in the late middle game.

Immediately after the tournament, DeepHex and MoHex each played two 11×11

30-minute exhibition games against Tony Van der Valk, one of the top-ranked Hex

players on the online game site Little Golem. DeepHex and MoHex each won both

games.
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parameter value description

ε 0.42 ε tolerance

η 0.21 allowed relative error of numbers in proof function

δ 132 the end of the first step in leaf initialization

MaxWorkPerJob 11 max work for single job for worker

Pmax 3 proof threshold when setting vmax

Dmax 4 disproof threshold when setting vmin

δp 8 extending the search interval on max side

δd 4 extending the search interval on min side

Rshift 297 RAVE error shift factor

Rimpact 1013 impact of RAVE error

Wmax 4334 error forgetting threshold

Table 5. Parameters tuned by CLOP for DeepHex running on 4 threads.

5 Conclusions and further research

We introduce Sibling Conspiracy Number Search, a version of Conspiracy Number

Search designed to work with a local heuristic (i.e. one that reliably estimates move

strength when compared to its siblings).

We implemented SCNS in Hex, creating the bot DeepHex, which we compared

to the champion bot MoHex, an MCTS player, and previous champion Wolve, an αβ

player. DeepHex outperforms Wolve at all time levels, and outperforms MoHex once

time reaches 4min/move.

We showed the strength of Sibling Conspiracy Number Search features. By far the

most critical feature is to initialize leaf (dis)proof functions via a multi-step — rather

than 2-step— staircase function. Also, we showed a parallel version of SCNS. Our

parallel SCNS Hex bot scales well — as well as MoHex — with 2 threads, but less

efficiently with 4 or 8 threads. An open problem is to parallelize SCNS more effectively.
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11. Rémi Coulom. CLOP: Confident local optimization for noisy black-box parameter tuning.

In Advances in Computer Games, Springer LNCS 7168, pages 146–157, 2011.

12. Martin Gardner. The 2nd Scientific American Book of Mathematical Puzzles and Diversions,

chapter 7, pages 78–88. Simon and Schuster, New York, 1961.

13. Sylvain Gelly and David Silver. Monte-carlo tree search and rapid action value estimation

in computer go. Artif. Intell., 175(11):1856–1875, July 2011.

14. Ryan B. Hayward. Mohex wins Hex tournament. ICGA Journal, 36(3):180–183, Sept 2013.

15. Philip Henderson. Playing and solving Hex. PhD thesis, UAlberta, 2010. http://

webdocs.cs.ualberta.ca/˜hayward/theses/ph.pdf.

16. Shih-Chieh Huang, Broderick Arneson, Ryan B. Hayward, Martin Müller, and Jakub

Pawlewicz. Mohex 2.0: A pattern-based mcts hex player. In Computers and Games, Springer

LNCS 8427, pages 60–71. 2014.

17. Hiroyuki Iida, Makoto Sakuta, and Jeff Rollason. Computer shogi. Artif. Intell., 134(1-

2):121–144, 2002.

18. Akihiro Kishimoto, Mark Winands, Martin Müller, and Jahn-Takeshi Saito. Game-tree

searching with proof numbers: the first twenty years. ICGA Journal, 35(3):131–156, Sept

2012.

19. Norbert Klingbeil and Jonathan Schaeffer. Empirical results with conspiracy numbers. Com-

putational Intelligence, 6:1–11, 1990.

20. Donald E. Knuth and Ronald W. Moore. An analysis of alpha-beta pruning. Artificial Intel-

ligence, 6(4):293–326, 1975.
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