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Abstract. BoxOff is a one-player game invented by Steven Meyers: a
rectangular board is covered with colored stones; a legal move is to re-
move two same-colored stones from opposite corners of an otherwise
empty rectangle. Removing all stones wins the game. We show that it
can be hard to determine whether a BoxOff puzzle is winnable: by re-
ducing from Boolean Satisfiability, we show that BoxOff is NP-complete,
even when only four colors are used.

Keywords: BoxOff puzzle · NP-Complete · Satisfiability.

1 Introduction

In 2013 in Games Magazine, Steven Meyers introduced his new solitaire game
BoxOff: see the article by Kerry Handscomb in Abstract Games Magazine for a
colorful introduction [6, 3]. The board has a rectangular grid; each board cell is
empty or has a colored stone. On a move, the player removes two stones of the
same color that lie on opposite corners of an otherwise empty rectangle. The
player wins by clearing the board. We are interested in this decision question:
given a BoxOff puzzle, is it solvable, i.e. can the player win? Consider Figure 1.
The left puzzle is solvable, e.g. remove {a1,b1}, then {b2,c2}, then {a2,c1}.
The right puzzle is not solvable: each of {b2,c1}, {b1,c2} must be removed
before the other, which is impossible. To learn the basics of BoxOff strategy, see
Handscomb’s article.
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Fig. 1: Two 2-color BoxOff puzzles (left is solvable, right is not).

Browne and Maire investigated the complexity of BoxOff [1]. They gave a
Monte Carlo analysis of random play, described a polytime algorithm to solve
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one-column k-color BoxOff, and noted that otherwise the puzzle’s complexity
was unknown. We will show that 4-color BoxOff is NP-complete, resolving this
open question.

2 Reduction overview

In the usual way [2, 5], we will show that 4-color BoxOff is NP-hard by reducing
from 3-CNF-Satisfiability (3-SAT). Given a 3-SAT formula, we construct a Box-
Off puzzle that is solvable if and only if the formula is satisfiable. The BoxOff
puzzle models a Boolean circuit, formed from gadgets (independent sub-puzzles)
that simulate Boolean variables, And and Or gadgets, fanout gadgets, color-
switch gadgets, and turn gadgets. In order to ensure that gadgets influence each
other only with respect to the flow of the circuit, we insulate the gadgets by
placing each inside one cell of a larger overlay grid.

We will show that the input formula is satisfiable if and only if the Box-
Off puzzle can be cleared by a two-phase process, starting with a multiple-
source/single-sink flow from each variable to a single cell indicating that the
complete formula is satisfied, followed by a cleanup phase that erases all overlay
stones and any remaining gadget stones.

3 4-color BoxOff is NP-complete

Here we give our reduction, and also show an example: the BoxOff puzzle cor-
responding to (x ∨ y) ∧ (x ∨ ȳ) ∧ (x̄ ∨ y).

We transform the input formula into a puzzle by connecting the literal gad-
gets to appropriate Or gadgets and thence And gadgets, using the wiring (turn,
fanout, and color-change) gadgets. We do not need a crossover gadget: there is
only empty space between the stones that are paired, and the overlay grid keeps
any gadgets from interacting that are not directly paired in a row or column.4

3.1 Overlay Stones and Gadget Stones

We use two stone colors (black and white) for the overlay grid. Within each row
or column that includes an overlay stone, the stones alternate colors. We use two
other colors (red and blue) for our gadgets. Each gadget fits in a bounded grid
called a container, defined as the empty rectangular regions within the overlay
grid. We align gadgets so that one gadget’s output is on the same line (horizontal

4 Reducing instead from Planar 3-SAT would not help us avoid the need for a crossover,
if crossing signals were not trivial in this setting. The reason is that we need to con-
nect the clauses together to produce a single output signal, a situation that is com-
mon in SAT reductions. But Planar 3-SAT only applies when the graph connecting
the variables to their clauses is planar; it does not allow us to further connect the
clauses. Instead, we would then have reduced from Bounded One-Player Constraint
Logic [4], which solves this problem.
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or vertical) as the next gadget’s input. At least one overlay stone separates any
pair of stones not in gadgets in the same row or column of the overlay grid, so
they can never interact. We only put two gadgets in the same row or column
when they are connected. Figure 2 is an example of the overlay grid.

Fig. 2: The overlay black and white stones, demarking the containers within. The
gadget stones are located in these containers, to prevent unwanted interactions.

3.2 Signals

Signals are propagated whenever an output stone from one gadget is paired with
an input stone in another gadget, removing both. We then say that the output
and corresponding input have been activated. The activation of its inputs (if
any) is what allows a gadget to activate its output(s).

3.3 Variable Gadget

A variable gadget consists of a single output stone, connecting to inputs in two
other gadgets. See Figure 3(a). Each variable corresponds to a switch, where
the player can set the output signal to be true or false. So each gadget has
two possible output directions, indicated in the figure by arrows. A satisfying
assignment corresponds to setting the appropriate output signal (true or false)
for each variable gadget.

3.4 Wiring Gadgets

Lemma 1. The turn gadget rotates its input signal by 90 degrees.

Proof. When the input signal is available, the red stone can be matched and
removed, allowing the blue stone to propagate the output signal.

Lemma 2. The fanout gadget splits one input signal into two.

Proof. An active input signal matches the middle blue stone, allowing the lower
and the upper red stone to be removed. The remaining blue stones can leave the
gadget as active signals.
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Fig. 3: Gadgets: (a) Variable (b) Turn (c) Fanout (d) Color-change.

Lemma 3. The color-change gadget turns a blue input signal into a red output
signal.

Proof. An active input signal matches the middle blue stone, allowing the upper-
middle and lower red stone to match and be removed. The remaining blue stones
match and the upper-left red stone serves as an output signal.

There are two ways to change colors: to maintain the direction of the input
signal, use the color-change gadget; to change the direction of the signal, use the
turn gadget. (The color-change gadget is actually not necessary: we could just
combine a fanout gadget and turn gadget instead. However, the color-change
gadget makes our transformations slightly more compact.)

3.5 Logical Gadgets

Lemma 4. The Or gadget functions as a logical OR operator.

Proof. Case 1) Both inputs are active: Both upper-level blue stones are matched
with input signals. Then the upper red stone is matched with either of the lower
red stones. Then the lower blue stone can leave the gadget as a active signal.
The two remaining red stones will match once the output signal is activated, i.e.
once the lower blue stone disappears.

Case 2) Only input 1 is active: The upper-right blue stone matches input
signal 1. Then the upper red stone matches the right red stone, allowing the
output stone to leave the gadget as an active signal.

Case 3) Only input 2 is active: Similar to the previous case.
Case 4) Neither input is active: No stones are matched: the output signal

cannot leave the gadget, so is inactive.
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Fig. 4: Logical gadgets: (a) Or, (b) And.

Lemma 5. The And gadget functions as a logical AND operator.

Proof. Case 1) Both inputs are active: The upper and middle blue stones match
the inputs. Then the red stones match, so the output blue stone is an active
signal.

Case 2) At most one input is active: At least one blue stone remains, pre-
venting the red stones from matching, so the output signal is inactive.

3.6 Gadget Interactions

We have already shown that gadgets not in the same row or column cannot
interact. But we also need to show that gadgets that are in the same row or
column can only interact as intended. Ideally this would mean that no pairs of
stones can be removed other than in the valid propagation of signals. In fact,
a slightly weaker condition suffices. First, we only connect non-turn gadgets
together via intervening turns, never directly. Then we only need to analyze
connections involving turns. But a turn has only two stones: the input stone
is the one intended to be matched, and can only be paired with its intended
partner; the output stone should instead be used to propagate the signal onward.
If instead the output stone is matched with a stone in another gadget, then the
signal simply doesn’t propagate, and no incorrect solution of the puzzle is thus
enabled. But what about the loss of the stone that inappropriately paired with
the turn’s output stone? This can only be a stone in the turn’s input gadget. If
that gadget has a single output, then any change in its properties is irrelevant,
because the output can’t propagate further. The only other case is that the input
gadget is a fanout. We need to verify that if a fanout stone inappropriately pairs
with an output turn gadget’s output stone, this does not then enable the other
output to activate. By inspection, this is the case.
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Fig. 5: Transformation of (x∨y)∧(x∨ ȳ)∧(x̄∨y). Gadgets for x,y in cells K3,D6,
auxiliary stones at L2,E5. Or at G10 is (x∨ ȳ), Or at D11 is (x∨ y), Or at J12
is (x̄∨y). And at F13 is ((x∨y)∧(x∨ ȳ)), And at I15 is (x∨y)∧(x∨ ȳ)∧(x̄∨y).

3.7 The Reduction

The main result of our paper is the following theorem. The example transforma-
tion shown in Figure 5 may serve as a reference here; it is analyzed explicitly in
Section 3.8. (Note: for compactness, in the example we relax the rule about only
connecting non-turn gadgets via turns; in this instance no unwanted interactions
arise.)

Theorem 1. Deciding whether a BoxOff game with 4 colors is solvable is NP-
Complete.

Proof. Let φ be a 3-CNF formula with variables x1, · · · , xn. Then we construct
a corresponding BoxOff configuration as follows.

Variable gadgets. There is one gadget for each variable xj .
Or gadgets. Our Or gadgets take two inputs. Each clause has three literals,

so we use two chained Or gadgets for each clause.
Fanout gadgets. A variable can appear in more than one clause, so we might

need to duplicate a variable’s output signal to all instances of the correspond-
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ing literals. For this, we use fanout gadgets, possibly sending signals far around
the grid, so we also need turn (and if necessary color-change) gadgets. A vari-
able gadget’s True (resp. False) output signal flows to Or gadgets in which the
variable is a positive (resp. negated) literal.

And gadgets: We use the And gadgets to logically combine the value of all
clauses; again, this operator takes only two inputs, so we need to chain k − 1
And gadgets to resolve a formula with k clauses. We can activate the final And
if and only if the formula is satisfiable. Notice that when at least one input to
the And gadgets is inactive, at least one And gadget will have uncleared stones,
and the BoxOff puzzle will not be solvable.

In the rest of this proof, we want to show that the BoxOff puzzle is solvable
when the input formula is satisfiable. Hence, assume the selected assignment is
satisfying; then, the construction described allows us to activate the final And
gadget, by activating the variable gadgets appropriately and propagating all
signals where possible.

Cleaning up overlay grid: In order to be able to clean up the board, we modify
our construction so that when the final And gadget emits an active signal, we
can remove the overlay grid. We route this active signal to a special middle row
of our construction, where to the right of the final overlay-grid stone, say black,
we add a red stone and then another black stone, and then alternating white and
black stones, enough to match the middle row of the overlay grid. See Figure
6(a).

In Figure 6(b), notice that the red stone in the middle row matches the final
And active signal, so the middle-row black stones adjacent to the red stone will
match, allowing the middle row to disappear completely, which will then allow
each column to disappear, as we construct the overlay grid so that within each
row and column, the black and white stones alternate, and the total number of
overlay stones in each column is odd.

(a) (b)

Fig. 6: (a) Rightmost edge of the grid, showing the middle row. (b) Rightmost
edge of the grid, with middle row and final AND gadget.
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Cleaning up remaining stones: Depending on the particular Boolean assign-
ment selected for our formula, each gadget (except for the And gadgets) might
have remaining stones, either because the signal never reached the gadget, or
the signal reached the gadget but not all stones were removed when the signal
flowed through. We now show how to add extra stones to variable gadgets so
that a final cleanup is possible whenever the formula is satisfied.

Fig. 7: The modified variable gadget has an extra stone located in a diagonally
adjacent cell.

The idea is that the extra stone can activate the True/False signal not as-
signed to the variable. This auxiliary stone must not interact with any gadget
until the overlay grid has vanished; we place it in a diagonally adjacent cell, as
shown in Figure 7.

We constructed our gadgets so that they normally receive inputs in a straight
line, but the auxiliary stone will not be in a line with the variable’s output turn
gadgets. To address this, we orient those turn gadgets such that the auxiliary
stone can still pair with them, as shown in Figure 8.

Fig. 8: The modified variable gadget, showing the connecting turn gadgets and
the auxiliary stone to be used during the clean-up phase.

Once all overlay stones and the satisfied parts of the gadgets are gone, the
auxiliary stone can be matched with the turn at the output of the unchosen path
and clear the following stones.
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Once the auxiliary stones for each unactivated literal path have cleared, each
instance of each gadget has disappeared: variable and auxiliary gadgets have
cleared; Ands have cleared; Ors all have both inputs activated (because each
traces back to a literal, or to another Or that has activated); fanouts split
variable outputs, and since all variable outputs are active, fanouts have cleared;
turns occur only on pathways connecting the above and so have cleared. So, with
a satisfying assignment, we can clear the entire board. If there is no satisfying
assignment, then the final And gadget is not cleared by signal propagation, and
overlay grid ensures that this gadget cannot be cleared in any other way.

Our reduction is polynomial: we have one And or Or gadget per logical
operator in the formula, and one variable or fanout per literal. We can place
each variable, auxiliary variable, And, Or, and fanout in its own column and
row. If we allow an equal number of rows and columns for routing, we can
connect any gadget output to any other gadget input with at most four turns
and one color-change gadget. Thus the number of rows and columns needed is
polynomial in the input size. The size of each container (i.e., the spacing of
the overlay stones) also need only be polynomial in the input size: the gadgets
might need to be positioned at various offsets within the containers to align
inputs and outputs, but at worst the required space would be polynomial in the
total number of gadgets, and all we actually need is that the logarithm of this
spacing is polynomial.

Finally, BoxOff is clearly in NP: a solution is a list of pairings, which is of
polynomial length, and can be easily verified. This completes the proof.

3.8 Example transformation

Here we describe our example transformation of (x∨ y)∧ (x∨ ȳ)∧ (x̄∨ y) shown
in Figure 5. For the sake of simplicity, this example is in 2-CNF.

To begin, consider a trial assignment, say x and y both false. Since x is false,
we follow the horizontal-right output signal from variable gadget x (at K3),
which then matches the red stone at K4. The signal then proceeds to the lower
input of the OR gadget at J12, then to the color-change gadget at J14, through
a turn gadget at J15, and reaches the lower-level input of the And gadget at
I15.

Meanwhile, starting from variable gadget y at D6, output proceeds to the
turn at D7, follows arrows to the upper input of the Or gadget at G10, and can
leave the gadget to reach the lower input of the And gadget at F13.

Notice that these two signals cannot move further, since the D11 Or gadget
has no active input. Thus neither And gadget at F13,I15 has an active upper
input, so each is inactive. So our current assignment fails.

Next consider the satisfying assignment with both x, y true. Now the x vari-
able stone at K3 activates the turn at J3 and the signal continues to the I3 fanout
gadget, whose vertical output continues to the lower input of the G10 Or. The
horizontal fanout output activates the I4 color-change gadget at I4 and then the
D11 Or lower input.
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Also, the y variable at D6 matches the red turn stone at C6. The output
of the turn gadget matches the input of the B8 fanout, whose vertical output
activates the upper input of the J12 Or. The vertical fanout output matches
the upper input of the D11 Or.

Now all Or gadgets have active outputs, so the two And gadgets have both
inputs active, so both have active outputs. The output of the I15 And matches
the red stone outside of the overlay grid, so the middle black-white row clears,
and each black-white column then clears.

After all black and white stones are gone, we are left with six turn gadgets,
two blue stones from the OR gadgets J12 and G10, and the auxiliary stone for
both x and y. The auxiliary x-stone at L2 matches the red stone at K4 and
eventually clears out the remaining lower blue stone for the OR gadget at J11,
and all turn gadgets in between. The auxiliary y-stone at E5 matches the D7
turn gadget and—the last step—the upper blue stone for the G10 OR, and all
turn gadgets in between. Finally, the board is clear.

4 Conclusion

We showed that 4-color BoxOff is NP-complete, resolving an open question of
Browne and Maire [1]. Our 3SAT reduction is straightforward, except for the
extra machinery needed to clean up the board once the final And activates.
Our reduction requires at least four colors: two for the overlay grid and two for
the gadgets. Might a different approach show hardness for three, or even two
colors? (One color is trivial.) We conjecture that with three colors BoxOff is still
hard, but with two it is polynomial. We encourage further work to clarify this
fascinating boundary.
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