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Abstract. In 1981 Claude Berge asked about combinatorial properties that
might be used to solve Hex puzzles. In response, we establish properties of
dead, or negligible, cells in Hex and the Shannon game.

A cell is dead if the colour of any stone placed there is irrelevant to the
theoretical outcome of the game. We show that dead cell recognition is NP-
complete for the Shannon game; we also introduce two broader classifications
of ignorable cells and present a localized method for recognizing some such
cells. We illustrate our methods on Hex puzzles created by Berge.
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1. Introduction

Claude Berge, who loved to play Hex, commented in [4] that
“[it] would be nice to solve some Hex problem by using nontrivial
theorems about combinatorial properties of sets (the sets consid-
ered are groups of critical [board cells ]).”

In response, we investigate properties of cells that are dead, or ignorable in a certain
sense, in Hex and the Shannon game and show how these properties simplify the
solution of Hex puzzles.

In §2 we review Hex and the Shannon game. In §3 we define dead cells and
show some basic properties; in particular, dead cell recognition is NP-complete in
the Shannon game. In §4 we introduce captured and dominated sets, two broader
classes of ignorable cells, and explain how some such sets can be defined in terms of
local subgames. In §5 we explain the strategic implications of these results, while
in §6 we describe how some such sets can be recognized. In §7 we illustrate our
analysis on some Hex puzzles created by Berge.

The authors gratefully acknowledge the research support of NSERC.
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2. Hex and the Shannon game

Hex is played on a board containing a rhombic array of hexagonal cells with an
equal number of hexagons on each side.1 Commonly used board sizes are 11× 112

and 14×14.3 The two players, Black and White, take turns placing a stone on the
board. White’s goal is to connect the lower-left and upper-right sides of the board
with a chain of white stones; Black’s goal is to connect the upper-left and lower-
right sides with a black chain. Lest the players forget their goals, each marks their
two sides with a pair of extra stones off the board. Figure 1 shows a completed
game which White has won.

Figure 1. An empty 6× 6 Hex board (left) and a completed game (right).

For Hex on any board size, there exists a winning strategy for the first player;
however, the only known proof is by reductio ad absurdum and no explicit general
winning strategy is known [9]. Indeed, determining the existence of a winning
strategy is PSPACE-complete for Hex [18] and so also for the Shannon game [6].
For more on Hex, see the website by Thomas Maarup [16], the survey by two of
the authors of this paper [12], or the book by Cameron Browne [5].

The Shannon game is played on any graph G with two distinguished terminal
vertices. Shannon originally formulated the game as played by colouring the edges
of the graph; in this paper we consider only the vertex colouring game.4 Further,
we restrict our attention to finite graphs. We assume that the colours used are χs

and χc.
The two players of a Shannon game are called Short and Cut. To start, the

terminal vertices are coloured χs and all other vertices are uncoloured. Play pro-
ceeds with each player in turn colouring any previously uncoloured vertex. Short’s
goal is to form a monochrome path containing the terminal vertices; Cut’s goal
is to prevent this. Thus Short needs to create a χs-coloured terminal-connecting
path while Cut needs to establish a χc-coloured terminal-separating cutset.

Hex is a special case of the Shannon game. Each Hex position, or board
state, can be represented as a Shannon graph in two dual ways. Figure 2 shows

1If the side lengths are unequal, the game is trivial due to an easy pairing strategy [9].
2This is the size used by Piet Hein, the original inventor of Hex [14].
3This is the size preferred by Berge [3, 10].
4The edge colouring game, known as the Shannon switching game, is actually a special case of the
Shannon game since it is equivalent to colouring vertices on the line graph of the original graph.
Lehman found a polynomial-time algorithmic solution for the Shannon switching game [15].
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Figure 2. The two dual Shannon game representations of the
5 × 5 Hex board. Short is White on the left and Black on the
right. Terminal vertices are labelled ‘T ’.

the two graphs that correspond to the empty 5 × 5 Hex board. Neither Hex nor
the Shannon game can end in a draw; proofs which hold for Hex are in [1, 8].

For the Shannon game, note that when a vertex is coloured by Cut, it may
equivalently be cut, or deleted, from the graph. On the other hand, when a vertex
is coloured by Short, it may equivalently be shorted or contracted by adding edges
between all pairs of its neighbors and then deleting the vertex. We refer to the
graph that results by shorting and cutting all coloured nonterminal vertices as
the Shannon reduced graph. For a Shannon board state represented by a graph G,
the vertices of the Shannon reduced graph G′ are the terminals and uncoloured
vertices of G, with two vertices adjacent in G′ if and only if they are adjacent or
connected by a χs-coloured path in G. Short has a winning path in G if and only
if the terminals are adjacent in the Shannon reduced graph G′; Cut has a winning
cutset in G if and only if the terminals are disconnected in G′. Figure 3 shows a
Hex position and the two Shannon reduced graphs that represent it.

In the remainder of this paper we use node to refer to both a vertex in a
Shannon graph and a cell on a Hex board.

3. Dead nodes

The Shannon game is a special case of a more general class of games known as
division games, which can be seen as set-colouring games with some function that
assigns a winner to each completely coloured set. Following Yamasaki, who gave a
theory of division games [21], an element in a particular state of a division game is
regular if it is never disadvantageous to own it, misère if it is never advantageous
to own it, and negligible if it does not matter who owns it. In the Shannon game,

T

T T

T

Figure 3. A Hex position and its two Shannon reduced graph representations.
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all nodes are regular and some nodes may become negligible during the course of
the game.

We shall refer to negligible nodes as dead. The notion of a dead cell in Hex
or other related games was implicitly recognized by Schensted and Titus in their
discussion of “worthless triangles” [19] and Beck et al. in the proofs of their opening
move results [1, 2].

Formally, define a board state (G, T, Ψ) of a Shannon game as a graph G with
a set of terminal nodes T and a colouring Ψ of some subset of the nonterminal
nodes. For colourings Ψ1 and Ψ2, say that Ψ2 extends Ψ1 if every coloured node
in Ψ1 has the same colour in Ψ2. A colouring is complete if every node is coloured.
If a colouring is complete, then the game is over and the winner is known.

Definition 3.1. A nonterminal node v in a board state (G, T, Ψ) is dead if, for every
complete colouring Ψ∗ that extends Ψ, the winner of (G, T, Ψ∗) is independent of
the colour of v; v is live otherwise.

Note that this definition applies to both coloured and uncoloured nodes.
The reader may enjoy working out which nodes are dead in Figure 3; the

answer is shown in Figure 4. Each of the three representations contains exactly
one dead node, and it is the same node in each case. As we shall see shortly, this
is no coincidence.

Consider a board state (G, T, Ψ) and a set S of uncoloured nodes. When Ψ
is extended to a complete colouring by assigning χπ to all nodes in S and χπ, the
colour different from χπ, to all other uncoloured nodes, the resulting colouring is
denoted by Ψ⊕π S. With respect to a board state, we say that S is a short set if
Ψ ⊕s S has a winning chain for Short. A short set is minimal if no proper subset
is a short set.

Theorem 3.2. For a board state of the Shannon game, an uncoloured node is live
if and only if some minimal short set contains it.

Proof. (⇐) Let S be a minimal short set that contains v, and let Ψ∗ = Ψ ⊕s S.
Short is the winner in (G, T, Ψ∗). If the colour of v is subsequently changed then
Cut is the winner, since otherwise S − v would be a short set and S would not be
minimal. Therefore v is live.

(⇒) Suppose v is live. Then there is an extension of Ψ to a complete colouring
Ψ∗ in which the colour of v determines the winner for Ψ∗. Let Ψ∗

s and Ψ∗
c be Ψ∗

with v repainted with χs and χc respectively, and let S be the uncoloured nodes of

Figure 4. The only dead cell for this Hex position.
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Ψ which are coloured χs in both Ψ∗
s and Ψ∗

c . Since Short wins (G, T, Ψ∗
s), S ∪ {v}

contains a minimal short set S′ for (G, T, Ψ). Since Cut wins (G, T, Ψ∗
c), S contains

no short set for (G, T, Ψ), so S′ is not a subset of S, so S′ contains v. �
For a Shannon board state with all non-terminal nodes uncoloured, a set is

a short set if and only if it contains a path between the terminals, and a set is a
minimal short set if and only if it is an induced, or chordless, inter-terminal path.
Thus we have the following.

Corollary 3.3. In the Shannon game, an uncoloured node is live if and only if it is
on some induced inter-terminal path in the Shannon reduced graph.

A coloured node is live if and only if it is live when uncoloured, so the pre-
ceding corollary can also be used to tell whether a coloured node is live.

Recognizing dead nodes simplifies Shannon game analysis, since:

Observation 3.4. A dead node can be assigned an arbitrary colour or removed from
the game without affecting the outcome.

Thus playing a move at a dead node is equivalent to skipping a move. In the
Shannon game no move can be worse than skipping a move, since all nodes are
regular, so every move wins if a dead cell represents a winning move. Also, if the
game has not ended, then at least one move is to a live node. Hence there is a
winning move if and only if there is a live winning move, and so:

Theorem 3.5. In the Shannon game, a player with a winning strategy has a winning
strategy in which every move is to a live node.

In the interest of streamlining the search for a winning strategy, a player
would thus like to be able to recognize dead nodes efficiently. So, how hard is it to
recognize dead nodes?

For a vertex subset S of a graph G, the set of all vertices on some induced
path between two vertices of S is known as the monophonic interval J(S). By
the preceding theorem, for a Shannon board state with reduced graph G′, the set
of live nodes is the monophonic interval J(T ) in G′, where T consists of the two
terminal nodes.

The induced path pairs problem is as follows: given a graph and vertex pairs
(a1, b1), . . . , (ak, bk), is there a vertex induced subpath consisting of k disjoint
induced paths joining aj to bj? Fellows showed the following [7].

Theorem 3.6 (Fellows). For k ≥ 2 the induced path pairs problem is NP-complete.

For k = 2, Marcus Schaefer observed5 that the induced path pairs problem
reduces to the problem of finding a monophonic interval by adding a new vertex
x adjacent to b1 and b2 and asking whether x is in J(a1, a2) Thus we have the
following.

Corollary 3.7. Determining membership of a monophonic interval is NP-complete.

5Private communication.
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Corollary 3.8. In the Shannon game, recognizing dead nodes is NP-complete.

Dead cell recognition might be easier in Hex than in the Shannon game. In
particular, in the Shannon reduced graph of a Hex position, dead nodes are often
simplicial or, more generally, separated from both terminals by a clique cutset.
Such nodes can be efficiently recognized using Whitesides’s algorithm for finding
clique cutsets [20].

Unfortunately, these observations do not simplify Hex analysis as much as
one might hope, since dead cells arise infrequently in typical Hex positions. On
the other hand, considering nodes that are at risk of becoming dead seems more
useful, as we explain in the next section.

4. Beyond death: captured and dominated sets

We introduce in this section two concepts that generalize node death. Informally,
we call a set of uncoloured nodes π-captured if player π can “own” the entire set
no matter who plays first, and π-dominated if π can own it provided π has the
first move. These notions evolved from [17, 11, 13].

By the value of a position, we mean the outcome assuming perfect play.
Consider for example the two Hex diagrams shown in Figure 5. On the left,

the two marked nodes are effectively captured by Black, since a White stone played
at either node becomes dead if Black then plays at the other. Thus adding Black
stones to these two nodes will not change the value of the game. On the right, the
three marked nodes form a dominating set for Black, since a Black move to the
node with a large dot captures the two other nodes.

Figure 5. A Black-captured set (left) and a Black-dominated set (right).

Before formally defining capture and domination, we first introduce a gener-
alization of the Shannon game.

The multi-Shannon game is a Shannon game played on a graph with two or
more terminals. At the start of the game, all terminals are χs-coloured. Short’s
goal is to join each pair of connected terminals with some χs-coloured path; these
paths may intersect. Cut’s goal is to separate each pair of nonadjacent terminals
with some χc-coloured cutset; these cutsets may intersect. This game can end in
a draw.

Consider the two graphs of Figure 6. On the left graph, Cut has a second-
player winning strategy, meaning that Cut wins even when Short goes first. On
the right graph, Short has a second-player winning strategy.
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Figure 6. Multi-Shannon games with second-player wins for Cut
(left) and Short (right).

When such a graph occurs as a particular subgraph in a regular Shannon
game, we can simplify the analysis of the game. In a graph, the neighbourhood
N(S) of a set S of nodes is the set of all nodes not in S but adjacent to some
node in S. Let G be a reduced Shannon graph with a set S of nonterminal nodes
and let ΓS be the multi-Shannon game played on the subgraph of G induced by
S ∪N(S) with terminals N(S). Then:

Theorem 4.1. If player π has a second-player winning strategy for ΓS, then S can
be filled in with χπ stones without changing the Shannon value of Γ.

Proof. Let Γ = (G, T, Ψ) be a board state, and let Γ′ = (G, T, Ψ′) where Ψ′ is the
extension of Ψ by filling in S with χπ. The theorem is equivalent to stating that
π wins Γ if and only if π wins Γ′.

(⇒) If π wins Γ, then π trivially also wins on Γ′, since Γ′ is formed by giving
π a number of “free” moves.

(⇐) If π has a winning strategy for Γ′ and a second-player winning strategy
for ΓS , then π can adopt the following strategy for Γ. Whenever π plays in S, π
responds with a move in S according to the winning strategy for ΓS . Otherwise,
π plays a move in G − S according to the winning strategy for Γ′. Let Γ∗ be the
final board state when all nodes are coloured. There are two cases to distinguish:
• π plays Cut: If Short forms a chordless winning path P in Γ then P cannot

intersect S, for otherwise the two nodes P ∩ T would be nonadjacent and
Short would have at least achieved a draw in ΓS with the path P ∩ S. But if
P does not intersect S then Short has won Γ′, contradicting Cut’s winning
strategy for Γ′.
• π plays Short: Short forms some winning path P ′ in Γ′. If this path does not

intersect S then it is also a winning path for Short on Γ. If it does intersect
S then there is a winning path on Γ that consists of P ′ − S plus some Short
path connecting the two nodes P ∩ ST ; the latter is guaranteed to exist due
to Short’s win on ΓS .

Therefore π wins Γ. �

For example, let S consist of the two marked nodes in the left diagram of
Figure 5 and consider the resulting subgame ΓS ; thus N(S) consists of the twelve
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Figure 7. Multi-Shannon games with first-player wins for Cut.

nodes forming the diagram boundary. Short has a second-player winning strategy
for ΓS : play at whichever node of S that Cut does not play at. Thus the theorem
tells us that for any Hex position containing this diagram the marked nodes can
be filled in with black stones without changing value of the position.

In the graph on the left in Figure 7, the game ends in a draw when Short has
the first move. If Cut has the first move, then Cut wins by colouring the bottom
node. If this graph occurs as a subgraph in a regular Shannon graph, then a Cut
move in the bottom node is equivalent to cutting all the nodes in the subgraph,
since the remaining part of the subgraph is a second-player win for Cut and can
therefore be filled in with χc. This leads to the following theorem.

Theorem 4.2. If player π has a first-player winning strategy for ΓS with winning
move v, then in Γ v is at least as good for π as any other move in S.

Proof. A π-move to v is equivalent to simultaneous π-moves to all nodes of S. �

We now formally define capture and domination with respect to a Shannon
game Γ, a set of uncoloured nodes S, and the local multi-Shannon game ΓS .

Definition 4.3. S is π-captured if π has a second-player winning strategy for ΓS .

Definition 4.4. S is π-dominated if π has a first-player winning strategy for ΓS .
For any initial move m in such a strategy, we say that m π-dominates S.

Based on the usual recursive definitions of wins and losses in games, we have
the following.

Observation 4.5. S is π-captured if and only if S is the empty set or, for each
π-move m in S, both (i) S−m is π-dominated and (ii) m is dead if S−m is filled
in with χπ stones.

Observation 4.6. S is π-dominated if and only if S is the empty set or there is
some π-move m in S such that S −m is π-captured.

In Observation 4.5, (i) guarantees that π can capture all cells of S −m after
an π move at m, while (ii) guarantees that the π-stone at m would then also be
dead; thus π captures all cells of S.
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Short moves first
Short wins draw Cut wins

Cut Short wins Short-captured – –
moves draw Short-dominated indifferent –
first Cut wins both dominated Cut-dominated Cut-captured

Table 1. Possible outcomes of a local position. E.g., for the event
“Short wins when both Short and Cut go first”, the outcome is
“Short-captured”.

Note that for any position of a Shannon game, each uncoloured node is dom-
inated by both players and each dead node is captured by both players. Also, note
that captured and dominated sets are defined only for uncoloured nodes, whereas
dead cells are defined for coloured and uncoloured nodes.

5. Strategic advice

A local subgame ΓS can be a win for Short or Cut or a draw, depending on whether
Short or Cut has the first move. The possible outcomes are listed in Table 1. The
boxes marked ‘–’ represent impossible combinations, since having the first move
cannot be a disadvantage in the multi-Shannon game.

Suppose player π is considering a move in ΓS . According to the outcomes in
Table 1, the following cases can be distinguished:

• One of the players has a second-player win. Then the set is captured and can
be filled in, as per Theorem 4.1. Any π-move in S would be wasted.
• Set S is dominated by π. Then π has a locally winning move in ΓS . By

Theorem 4.2, π can safely play such a move.
• Set S is dominated by π but not by π. Then the best local move available

for π is a local draw, while other moves may be local losses. Since a locally
losing move can be followed by a π-move that captures S and kills π’s move,
π should avoid locally losing moves.
• Set S is not dominated by either player. Any π-move leads to a local draw

with locally optimal play. The choice of move depends on which pairs of
terminals are favourable for π to connect or disconnect in the global game.

This information can be summarized by the following theorem.

Theorem 5.1. Let Γ be a multi-Shannon game, and let v and w be moves in a
subgame ΓS defined by a set of nodes S. If v is at least as good as w for player π
in ΓS, then v is at least as good as w for π in Γ.

Thus, if π is going to move in S, then π should make a move that is optimal
in ΓS . In short, “do not make any local mistakes”. Here we consider the act of
making no move at all to be optimal in a second-player win game, since it is better
than wasting a move.
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Once dominated and captured sets have been identified, the strategic advice
for player π to move, is:

1. Fill in all captured sets, iterate until no new captured nodes are found.
2. For any π-dominated set, pick one dominating move and ignore the rest.
3. For any π-dominated set, ignore the locally losing moves.

A special case of Step 3 is a π-dominated set with two nodes {v, w}. There,
the dominating move for π, say v, is also the only locally drawing move for π. If
π moves in w then S − w is still dominated by π, since it is a single uncoloured
node, and v is dead after π moves in w, since S was π-dominated by w.

Theorems 4.1–5.1 also hold in the more general case where a multi-Shannon
game is a subgame of another multi-Shannon game.

6. Recognizing captured and dominated sets

In order for a player to benefit from our results so far, the player should be able
to recognize captured and dominated sets efficiently. One way to achieve this is to
build a library of local patterns, or subgames, that yield such sets.

Consider a set Q of nodes of a Hex position, where Q may contain Black or
White stones. Let S be the uncoloured nodes of Q. Create a new board position
by uncolouring all coloured nodes in N(Q). Now let Γ be the reduced Shannon
graph of this new position. Any move in S that is suboptimal in the multi-Shannon
game ΓS is also suboptimal in the original Hex position. This allows moves in Q
to be analysed while ignoring the rest of the board. Moreover, whenever this same
node pattern occurs anywhere else on the board, the local analysis results are the
same. We consider such a pattern to be irreducible if none of the captured cells or
suboptimal moves could have been detected by considering a smaller pattern.

Such a library need not be exhaustive, as there is a trade-off in effort saved
by disregarding locally suboptimal moves and effort invested in detecting them.
Experimental computer results suggest that in Hex games such sets are almost
always reducible to a few base cases that can be derived from simplicial nodes.

Such a derivation is illustrated in Figure 8, which shows irreducible local Hex
patterns with two empty cells that can be built up by starting from all cases in
which a node is found to be simplicial by considering only its immediate neighbor-
hood in the nonreduced graph. In the five starting patterns shown on the bottom
of the figure, the empty cell is dead. Removing a White stone from each pattern
yields a pattern with a two-cell White-dominated set; the dominating move is in-
dicated with a dot. Now, pairs of these six patterns are combined to form larger
patterns with two empty cells, such that each empty cell White-dominates the
other; these two cells form a White-captured set. The eleven larger patterns that
can be created in this way are shown as entries of the central array of the chart,
with each entry indexed by the two smaller patterns that yield it.

There are no irreducible captured set patterns with three connected empty
cells. Figure 9 shows examples of irreducible captured sets with four empty cells.
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Figure 8. Constructing irreducible White-captured sets (empty
hexagons of table entry patterns) and White-dominated sets
(empty hexagons of row and column index patterns) from the
five bottom dead-cell patterns.
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Figure 9. Some irreducible White-captured sets.

7. Hex examples

Claude Berge presented five Hex puzzles in his introduction to the game [3]6 (see
also [10]). Figures 10–13 show the static analysis of these puzzles according to
the notions of captured and dominated sets. Captured cells, including dead cells,
have been marked by a large dot. Small dots represent suboptimal moves in locally
dominated sets. Table 2 summarizes the statistics for these puzzles.

Figure 10. Berge’s Puzzles 1 and 2. White to play can ignore
all but the unmarked empty cells. Large dots are captured; small
dots are locally inferior.

puzzle available ignored viable percentage
number moves moves moves ignored

1 15 11 4 73%
2 19 13 6 68%
3 163 65 98 40%
4 145 75 70 52%
5 120 59 61 49%

Table 2. Statistics for dead cell analysis of Berge’s puzzles.
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Figure 11. Berge’s Puzzle 3: Black to play.

Figure 12. Berge’s Puzzle 4: Black to play.
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