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Abstract

Clobber is an all-small game usually played on a checkerboard but the rules easily generalize
to play on an arbitrary graph. We show that, on a graph, determining the value of the game

is NP-hard. We also examine clobber on a 1 × n and a 2 × n strip.

Keywords: Clobber, combinatorial game, all-small, infinitesimal, NP-hard.

1 Introduction

Clobber is a partisan game that was first developed and investigated by the authors at
Games-at-Dal 2001. It was then introduced at the 2002 Dagstuhl seminar on algorithmic

and Combinatorial Game Theory. In the initial position, black and white tokens are placed

on the vertices of an undirected graph, at most one per vertex. A player moves by picking up
one of their tokens and “clobbering” an adjacent token of the opposite color; the clobbered

token is replaced by the one that was moved. The last player to move wins. In practice, the
game is played on a checkerboard (grid graph), where all squares are occupied with tokens
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of the same color as the square. A 6× 7 board suffices to highlight the features of the game.
See [10] for a report of the first clobber world championship. Recently, a 10 × 10 board has

become more popular.

Because there is no position in which one player can move and the other cannot (both

players have a move if and only if there are adjacent tokens of opposite colors), clobber is
an all-small [1, p. 229] [2, p. 101] game. In Amazons and Go, for example, a player wins

by gaining territory in which the other player cannot move. In clobber, neither player can

gain such an advantage; in particular, the game values are all infinitesimals [1, p. 36–37] [2,
p. 100].

In the next section of this paper, we give a genealogy, some examples of game values that
occur and leave with some conjectures about 1×n and 2×n positions. The game values for

clobber, in general, do not have nice canonical forms. Atomic weights [1, Ch. 8][2, p. 217]
are a way of avoiding complicated infinitesimals. In the third section, we introduce atomic

weights. They help to show that the game will not have an easy solution. The addition of
just one piece can change the atomic weight, in either direction, by an arbitrary amount. In

Section 4, we determine the atomic weight for an arbitrary graph that has just one white
token and the rest are black. This result allows us to show that clobber is NP-hard. The

final section describes a position justified by its aesthetic appeal.

For background on combinatorial games please see [1], [2], or the survey articles in [12].

The notation and game values studied here are developed, in depth, in [1] and [2].

2 Genealogy

Clobber originated from work on one-dimensional peg duotaire. Peg duotaire [14] is an
impartial game; the moves are the same as in peg-solitaire but there are two players and

the last player to move wins. The one-dimensional version, studied in [11], is played with a

row of holes that can hold pegs. Each move consists of jumping one peg over an adjacent
peg and landing in an empty hole; the peg that was jumped is removed. The last player to

move is the winner. A closed set of positions results from pairing up the holes and allowing
at most one peg in each pair. Such positions can be represented using a shorthand notation

with for a peg, for a hole and letting x = and o = . For example,

becomes xxoxxoo

It is not necessary to explicitly represent since it can be shown that in these positions

an empty pair of holes separates the position into disjoint sub-games. Using this shorthand
notation, the legal moves are xo → x and xo → o . That is ‘x’ can capture ‘o’ to the right

and ‘o’ can capture ‘x’ to the left. This naturally becomes a partisan game by allowing
Left to move x and Right to move o. We can generalize the game beyond one dimension by
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removing the directional restrictions and allowing the capture of any adjacent and opposite
piece; the resulting game is clobber.

It should be noted that another partisan generalization of peg-duotaire is konane, al-
though konane predates peg-duotaire by at least 200 years. This game is played on a 10×10

checkerboard, black pieces and white pieces on their own colors except for two adjacent
squares. Pieces move as in peg solitaire (over an opponent’s piece on to an empty square)

and jumps can be chained but the piece jumping is not allowed to change direction. See [5]

for the exact rules and variants. Konane was a popular game in Hawaii before 1900, and it
is not well understood.

Using the taxonomy proposed by Fraenkel [7], clobber is both a math-game and a play-
game. The 1 × n and 2 × n positions considered in this paper are primarily of theoretical

interest and, for the most part, do not generate interesting play between two players. By
contrast, the m× n checkerboard, with white pieces starting on white squares and black on

black squares, are, currently, mathematically intractable but they are good positions for a two
player game that involves a combination of skill, intuition and knowledge of combinatorial

game theory.

For clobber positions, we use for a white token which is played by Right, and for a

black token which is played by Left.

3 Values, Conjectures and Atomic Weights for 1 × n

and 2 × n positions

3.1 1 × n Clobber

We begin by evaluating some simple positions.1

= = 0
= ∗
= {0 | } = {0 | ∗} = ↑
= {0 | } = {0 | ↑} = 2.↑ + ∗

If X is a pattern of black, white and empty spaces we denote a string consisting of n

copies of this pattern by Xn, so ( 2)3 = .

Lemma 3.1

m n = 0 for m, n ≥ 2; and

1Since clobber is usually played on the grid graph, throughout this paper, nodes which are adjacent
horizontally or vertically are assumed to be connected by an edge.
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n = (n − 1).↑ + n.∗.

Proof: In m n with m, n ≥ 2 the first player always loses; after the first player captures,

the second player captures back to end the game. The second assertion follows by induction
and the base cases were evaluated before the statement of the Lemma. Specifically,

n =
{
0

∣∣∣ n−1
}

= {0 | (n − 2).↑ + (n − 1).∗}
= (n − 1).↑ + n.∗

We leave this section with two conjectures.

Conjecture 3.2 ( )n is a first player win for n �= 3.

Conjecture 3.3 ( )n = �(n + 1)/2�.↑.

The first conjecture has been verified by computer up to n = 19 and, except for n = 3,

the first player has few losing moves. The second conjecture has been verified up to n = 17.

3.2 2 × n Clobber

Consider the 2 × n position
( )n

=

n︷ ︸︸ ︷
· · ·

Lemma 3.4 If n is even then
( )n

= 0.

Proof: The second player can use one of (at least) two strategies: (1) partition the board

into 2 × 2 squares; when the first player plays a vertical move in a square the second player
responds in that square with the unique horizontal response. Or, (2) play rotationally

symmetric moves maintaining the invariant that a 180 degree rotation about the midpoint
inverts and .

For n odd, we can only present conjectures.

Conjecture 3.5 For n odd
( )n

is a first player win.
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This has been verified by computer up to n = 13. The position quickly gives rise to many
sub-positions, some of which can be dealt with here.

Claim 3.6
( )n

= 0.

Proof: By symmetry, it suffices to show that can win if moves first. White’s strategy is

as follows: each time captures up, captures by moving to the right leaving two smaller
positions of the same form.

Claim 3.7 If n is even then
( )n ≤ 0.

Proof: We need to show that has a winning strategy if (Left) moves first. Pair up the
n middle columns. Whichever column moves in, responds by clobbering down in that

column’s pair. This splits the position into two subgames one of which is a smaller position of
the same form and the other which is rotationally anti-symmetric and therefore zero. (Here

we use the fact that the number of columns is even; if n were odd then Left could destroy
the symmetry by moving vertically in the middle column.)

3.3 Atomic Weights

In all-small games, atomic weights [1, Ch. 8] [2, p. 217] play an important role in the de-
termining of the outcome of a position. In [1] they are used to analyze small positions of

Hackenbush and Childish Hackenbush. In clobber, all the positions are small. We begin

with a brief overview of atomic weights.

Let = {0, ∗, ∗2, . . . | 0, ∗, ∗2, . . .}, i.e. the game whose options are ∗n for all non-

negative integers n. The atomic weight of a game, aw(g), is defined recursively:

Definition 3.8 If g = {a, b, c, . . . | d, e, f, . . .} where a, b, c, d, e, f , . . . have atomic weights

A, B, C, D, E, . . ., then the atomic weight of g is

G0 = {A − 2, B − 2, C − 2, . . . | D + 2, E + 2, F + 2, . . .}

UNLESS G0 is an integer and either g > or g < . In these exceptional cases, if g >
then aw(g) is the largest integer G for which G D + 2, E + 2, F + 2, . . .. Similarly, if if

g < then aw(g) is the least integer for which G A − 2, B − 2, C − 2, . . ..
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A number of useful facts concerning atomic weights are not at all obvious from the
definition. (Refer to [1, Ch. 8] for proofs.)

First, atomic weights are additive:

aw(G + H) = aw(G) + aw(H)

(A game of clobber breaks down in independent sub-games relatively quickly so this is a very
useful property.)

Atomic weights are order preserving:

If G ≥ H then aw(G) ≥ aw(H)

Sometimes the atomic weight suffices to determine the winner. If aw(G) ≥ 2 then G > 0;

if aw(G) ≤ −2 then G < 0; if 2 > aw(G) > −2 then the atomic weight does not determine
the winner. In the context of a , the atomic weights do determine the winner:

g + ≥ 0 if and only if aw(g) ≥ 1 .

In this last statement, can be replaced by any ‘remote’ nimber ∗n, where remote means

that no position of g, including g itself, has value ∗n. We have not encountered a clobber
position with value ∗4, however, has value ∗2 and will serve as a remote nimber

for many positions.

Following from Lemma 3.1, it would be nice to assume that the atomic weight can-

not change by more than 1 when an extra piece is added, but this is false. For example,
Lemma 3.1 shows us that aw( n) = 0, aw( n) = n − 1 and, for n ≥ 2, aw( n) = 0.

For n > 4, the game
n

has atomic weight {0 | {0 | 4−n}} = n−4. In addition,
positions with atomic weights of 1/2, 1/4, 1/8, ↑, ∗ and 1 can fit on a 2×7 board (Figure 1).

The game n has atomic weight {n − 3 | 2} showing that arbitrarily hot atomic weights

can occur.

3.4 Award Winning Clobber Problem

The problem in Figure 2 was composed by Adam Duffy and Garrett Kolpin, and was the

winning entry at the Clobber Problem Composition contest held at the Third International

Conference on Computer and Games in Edmonton in the summer of 2002.

Their solution involves calculating the atomic weight of each component, and treating the

component of value ∗2 as a remote star relative to the other positions. The components have
atomic weights which total to −1 + 2, and so, by properties listed in [1, p. 236], the first

player can win. Black can win by first moving on the component to .
Duffy and Kolpin’s detailed solution can be downloaded from [4].
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Position Value Atomic Weight

∗2 0

⇑∗ | ↓∗ 1/2

⇑∗ | {∗, ↓ | ⇓∗}, {0 | } 1/4

⇑ | 0, {0 ‖ ⇓∗, | 5↓} 1/8

⇑ | 0, {0 | ∗} ↑
⇑ | ⇓∗ ∗

⇑∗ | ↓, {0 | ∗, 5↓} 1

↓, {⇑∗ | ↑ ‖ 0, {∗, ↑ | ∗, ↓} ||| ∗ | ↓} ‖ ⇓∗ | 8↓∗ −2 + 2

(extremely complex) −2 + 1
2

Figure 1: A sampling of atomic weights appearing in clobber

Figure 2: Problem: Black to move and win.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(2) (2005), #A01 8

4 Clobber is NP-hard

In this section, we will consider graphs with only one white token. Consider a graph G and

the corresponding game Gv in which all but vertex v is occupied by black tokens and v is
occupied by a white token.

A blocked v-path in G is any maximal path P = {v0 = v, v1, v2, . . . , vr} starting at v.
That is, every vertex adjacent to vr is in P so that the path cannot be extended from vr. A

blocked split v-path, or split path for short, is a blocked path P = {v0 = v, v1, v2, . . . , vr} for
which there exists vertices x, y such that Q = {v0 = v, v1, v2, . . . , vr−1, x, y} is also a blocked

path. The length, l(P ), of a blocked path P = {v0 = v, v1, v2, . . . , vr} depends on whether
the path is split:

l(P ) =
{

r + 1 if P is not a split path
r if P is a split path

It may be that the two paths in a split path only have v in common but then l(P ) = 1: for

example, . Let

l(Gv) = min{l(P ) |P is a blocked path or a split path of Gv}.
For example,

l( ) = 3

l( ) = 2

l( ) = 3

Note, that if G is a row of n ≥ 2 vertices with v at one end then Lemma 3.1 gives that

aw(G) = aw((n − 2).↑ + n.∗) = n − 2. Also, note that aw( ) = aw(↓ ∗) = −1, whereas
aw( ) = 1. At the end of a split path, i.e. at , Right has the option of moving

to 0 or to = ∗, both of which have atomic weight 0. This choice between two apparently
small games is actually the difference of playing to a first-player-win and a second-player-win

game. This gives Right a local advantage that is reflected in the atomic weights.

Lemma 4.1 For a graph G with v ∈ V (G) having at least one neighbor,

aw(Gv) = l(Gv) − 2

(In the exceptional case when v has no neighbor, Gv = 0.)

Proof: We prove this by induction on the number of vertices, and assume throughout that
G is connected and v has a neighbor. Note that Left’s options are all identically 0.

First, suppose l(Gv) = 1. Since v has a neighbor, the blocked path of length 1 must be
split, so Gv is of the form
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H

or

H

where H is arbitrary and possibly empty. Right has moves to ∗ and to 0. A move to a vertex
in H by induction has atomic weight ≥ −1. In the preliminary atomic weight calculation of

Gv,
G0 = {0 − 2 | 0 + 2, . . .}

where the omitted right options could be from {−1+2, 0+2, 1+2, 2+2, . . .} and the atomic

weight of Gv is either −1, 0, or (possibly) 1, depending on how Gv compares with . But

Gv = {0 | 0, ∗, . . .} ≤ {0 | 0, ∗} = ↓∗,
which has atomic weight -1. So aw(Gv) = −1.

If l(Gv) = 2, then in the preliminary atomic weight calculation of Gv,

G0 = {0 − 2 | −1 + 2, . . .}
and aw(Gv) is either −1 or 0. We’ll confirm Gv + 0, and hence aw(Gv) must be 0: Left

can win moving first on Gv + by moving to 0, and then moving Gv to 0 at Left’s next
opportunity. (Right can’t move to Gv to 0 because l(Gv) = 2.)

Henceforth, assume l(Gv) > 2. We know that Gv = {0 | (G − v)w, w adjacent to v}
There is at least one vertex b that is the next vertex on a shortest blocked path from v and

l((G − v)b) = l(Gv) − 1. So, the preliminary atomic weight of Gv is,

G0 = {0 − 2 | l((G − v)b − 2 + 2} = {−2 | l(Gv) − 1)} ,

and aw(Gv) is −1, 0, or l(Gv) − 2, depending on how Gv compares with . The same
argument as the l(Gv) = 2 case shows Left can win moving first on Gv + . But Left can

also win moving second by moving to 0 as soon as possible. Even given two consecutive
moves on Gv, Right cannot move Gv to 0 since l(Gv) > 2.

Theorem 4.2 Determining the atomic weight of a clobber graph, Gv, is NP-hard.

Proof: We reduce from Hamiltonian path which is NP-complete [8, p. 199 (GT39)]. Let
(H, v) be an instance of Hamiltonian path, where H is an undirected graph on n vertices,

and v ∈ V (H). For the clobber position, construct the following graph on 2n + 1 vertices
which has H as a subgraph:

v

H Knx



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(2) (2005), #A01 10

The new graph, G, consists of a new vertex x, H , and a clique on n vertices, Kn. Every
vertex of H is connected by an edge to x and to every vertex of Kn. So the new graph has

n + |E(H)| + n2 +
(

n
2

)
edges.

The reader can confirm that Gv has no blocked paths of length n and that any blocked

path of length n + 1 in Gv must visit all vertices of H , and then end at x. Further, Gv has
no split paths of length n. Hence, the atomic weight of Gv is n − 1 if and only if H has a

Hamiltonian path originating at v.

Corollary 4.3 Determining who wins from a clobber position is NP-hard.

Proof: Define Gv as in proof of the last Theorem and let

C =

n︷ ︸︸ ︷· · · .

If H has a Hamilton cycle, then Gv ≤ C, for the right options from positions in C are a
subset of the right options from positions in Gv. If H has no Hamilton path, then Gv C,

since aw(Gv) ≥ n and aw(C) = n − 1. Hence, White wins moving second on Gv − C if and
only if H has a Hamilton path.

We leave open whether clobber is NP-hard when played on a grid graph.

5 For the Clobber Museum

The following 3 × 7 rectangle is fascinating:

G =

In particular, a remarkably large number of paths which the white stone can take through

the rectangle are canonical. Figure 3 includes G as one component, along with a second
component, call it H , which is G’s negative. Furthermore, H has no dominated or reversible

options; it is in canonical form.

Since the sum of the two components has value zero, the second player wins. If Black

moves first (typically on H), White can find his winning response on G by observing the
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R U U

U L D

D R U

L R

D D L L L R U R

D R L D R L D

R U U R R D R D R R U L U U R

L U R R R R U

L U U D D L U R D R D R

L L L D L

L U L L U

Left
Right
Up
Down

Figure 3: A position of value zero. The markings provide guidance on how to win moving
second.

direction (Up, Down, Left, or Right) indicated on the stone which Black captured. Except

when the 3 × 7 component is symmetric, all winning responses are unique.

By Lemma 4.1, the atomic weight of the 3 × 7 component is 6; to achieve this, White’s

moves are U-R-R-D-D-L-U.

The position has another curious property. Augment H by lengthening or shortening any
of its tendrils by one to get a new position H ′. In that case, G + H ′ is incomparable with 0.

Black wins moving first by making a bee-line towards the augmented tendril until either (1)
White fails to follow the markings on the stones, or (2) Black gets near the end of a tendril.

In either exceptional case, with practice the reader can confirm that Black can win.

Similarly, White can win moving first by moving on the 3 × 7 component, following the

letters on the marked stones along the augmented tendril to coax Black along.

Lastly, lengthening any tendril by two white stones yields a position in which White wins

moving first or second.
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