Hex: Passing on the Torch

Philip Henderson

November 3, 2010

1 Introduction

This document is intended to help those contributing to the University of Alberta’s Computing
Science Hex research group. Whether you are developing new code, trying to understand the
theory, or simply applying the software to analyze Hex positions, this document will direct you to
the important resources and help you on your way. Best of luck!

2 Installing the Software

There are two major units of the Hex project: the underlying engine (Benzene) and the graphical
user interface (HexGui).

2.1 Benzene

The Hex engine builds on Fuego, the code base for the Monte Carlo Tree Search (MCTS) Go player
built by the University of Alberta’s computer Go research group headed by Martin Miiller. Thus
you must download and compile both Fuego and Benzene in order to use Benzene. Fuego and
Benzene require that the following software be installed:

e svn (1.6.6 or greater)

e git (1.7.0.4 or greater)

e Boost (1.33 or greater)

e Berkeley DB (4.8 or greater)

libdb4.6

— db4.6-util
db4.7-doc
db4.7-util

— libdb4.8-dev
libdb4.8-doc

Checkout Fuego via “svn co https://fuego.svn.sourceforge.net/svnroot/fuego/trunk fuegoDir”,
where fuegoDir is the directory you want it checked out to.



Checkout Benzene via “git clone git://benzene.git.sourceforge.net/gitroot /benzene/benzene ben-
zeneDir”, where benzeneDir is the directory you want it checked out to. If you’re going to be com-
mitting code, use “git clone ssh://username@benzene.git.sourceforge.net /gitroot /benzene/benzene
benzeneDir” instead (where username is your sourceforge user name), but for this you need per-
mission to alter the sourceforge code (right now Broderick holds the keys to this).

Once you have both checked out, there is a README file in benzeneDir that gives instructions
on how to compile both. Please pay attention to the following;:

1. The Fuego and Benzene versions have to be compatible.

2. Assertions must be on in Fuego if you want them on Benzene. Assertions reduce speed
and break multithreaded MoHex, but I recommend them if you will be doing significant
development and/or testing.

3. If you want to work on Hex boards larger than 11x11, you have to use the appropriate compiler
options.

4. Compilation of both programs is quite slow (especially Fuego), so I recommend using the
multithreaded make with as many threads as you have available (e.g. “make -j4”).

2.2 HexGui

The interface can be used with or without the Benzene engine. However, without the engine, one
is limited to rather simple tasks: setting up positions, playing games against a human, opening
up Hex .sgf files, etc; basically, using it as an electronic Hex board. By connecting Benzene, one
can play against the computer, solve positions, perform inferior cell analysis, identify connection
strategies, and so on. HexGui requires that the following software be installed:

e java (1.6.0_18 or greater)

e svn (1.6.6 or greater) if you will be editing the HexGui code

If you are only going to be using HexGui (i.e. not coding new features), you can download it from
http://webdocs.cs.ualberta.ca/~broderic/hex/. This should be transferred to a more permanent
site in the near future; probably sourceforge, the UofA Hex site, or Ryan Hayward’s personal
webpages.

Once you have downloaded hexgui-0.9.0.zip, move it to where you want your HexGui directory
(e.g. your home directory) and just do “unzip hexgui-0.9.0.zip”. The README file will tell you
how to compile and run; it’s quite simple (do not worry about the warning messages).

If instead you want to commit changes to the HexGui code, then you need to checkout HexGui
via “svn co file:///usr/teesl/cshome/broderic/svnroot /hexgui/trunk/ hexguiDir”.

2.3 Six

Six is not part of our code base, but it was the gold medallist for several years, and it is still a
decent player. It is open source, and can be downloaded from its website: http://six.retes.hu/.
However, since Six’s command interface does not match ours, we modified its interface slightly,
and you can download this modified version using “git clone ~broderic/git/six.git”. As always,
instructions on how to build it are in the README file; note that this modified version requires
Fuego and Benzene in order to compile.



3 Applying the Software

3.1 Benzene Executables

Compiling benzene produces two executables (within your benzeneDir): src/wolve/wolve and
src/mohex/mohex. Note that the solvers and analytic tools are available in both executables,
so you should only choose between them based on which player you wish to use, alpha-beta Wolve
or Monte Carlo tree search MoHex.

3.2 Benzene Commands

When running these executables in the terminal, the following Hex Text Protocol (htp) commands
are available:

e quit: Ends the program.

e boardsize N M: Changes the board size to N x M, where N and M are positive integers (recall
that these integers are bounded according to Benzene’s compiler options). If M is omitted,
changes the board size to N x N.

e showboard: Displays current board position.
e clear_board: Clears the board of all stones and starts a new game.

e play COLOUR CELL: Plays a COLOUR stone at the given cell, where COLOR is either
“black” or “white” (shorthand “b” and “w” also works) and CELL is of the form “al” (i.e.
column letter followed by row number, with no space between the two).

e genmove COLOUR: Generates a move (using whichever player corresponds to the program
you are running) for the COLOUR specified.

e dfpn-solve-state COLOUR: solves the current position, with COLOUR indicating the player
to move.

e vc-build COLOUR: Computes inferior cells and connection strategies for the current state,
and indicates the mustplay for the COLOUR specified.

e param_mohex/param_wolve: Only one of these commands will be available, depending on
which executable you are running. This command lists the settings of the corresponding
player. You can use these parameters to adjust the player.

e param_player_vc: Lists the player’s H-search parameters.
e param_player_ice: Lists the player’s inferior cell analysis parameters.

e param_dfpn, param_dfs, param_solver_vc, param_solver_ice: Lists the parameters for the
DFPN/DFS solvers and their H-search and inferior cell analysis engines.

This is by no means a complete list, but will definitely give you enough tools to start off with.

I should also note that the DF'S solver has not been maintained, and is broken at this time (due
to changes in inferior cell analysis, I believe). On average the DFS solver is significantly slower
than the DFPN solver, which is why it hasn’t been a high priority to keep it maintained.



3.3 Benzene Tournaments

As you develop new versions of the players, you will likely want to test them against each other to
see whether you have improved their playing strength. Of course Wolve and MoHex are available
for testing and, if you downloaded our modified version of Six (which uses our htp interface), then
you can use that program in the tournaments as well.

First of all, for each program you should prepare a .htp file which determines its (non-default)
settings. For instance, here is the Wolve-CG2010.htp file:
param_game allow_swap 1
param_wolve panic_time 0
param_wolve ply_width “15 15 15 15”
param_wolve use_parallel_solver 1

Once you have a .htp file for each player you wish to test, follow the instructions found in the
HOWTO file within your benzeneDir/tournament directory.

3.4 Benzene Regression Tests

In your benzeneDir /regression directory, there are several regression tests that can be used to test
the solvers, players, and analytic tools (such as inferior cell analysis and connection strategy com-
putation). The instructions are in that directory’s README file, but here are a couple examples
to clarify:

e time ./run.sh -1 dfpn-solve-7x7.tst: Solves all 7x7 openings with the DFPN solver, indicating
when each opening is solved and reporting the total time at the end.

e ./run.sh -p “../src/wolve/wolve —config settings-ve.htp” ve.tst: Tests the strength of the con-
nection strategy computation algorithms when using the settings specified in settings-vc.htp,
only indicating unexpected passes and failures.

Note that the detailed output of such tests can be viewed in the html/ subdirectory (the latest
results for a particular .tst file overwrite any previous such results).

3.5 HexGui

The interface is reasonably self-explanatory (although the code is not in a clean, finalized state).
Menu items such as printing, time control, edit preferences and help are pretty useless at this time,
so you will probably use the following functionality:

1. Open Hex sgf files.

2. Save a game or position (the latter only contains one state - the current stones - rather than
a sequence of moves).

3. Create and connect programs (details below).

4. Edit the board size. Recall that benzene must be compiled with certain options if you want
to apply its tools on boards larger than 11x11.

5. Change the view’s board type/orientation (standard is flat and Black on top).

To connect Benzene’s executables to the GUI, do the following:



1.

Program, New Program: Enter the name you wish to use for this program, and the relative
path from the hexgui executable to the wolve/mohex executables in your benzene directory.
For instance, the command “../benzene/src/wolve/wolve” with a name of “Default Wolve”
and no entry for the working directory. You should probably have at least one entry for Wolve
and one entry for MoHex. This process only needs to be done once.

Program, Edit Program: Edit one of the above entries that you have defined. For instance,
you can add “ —config wolveSettings.htp” in the command if you do not want to use default
settings. At the very least, I recommend turning on the GUI effects for both players and the
DFPN solver via “param_wolve use_guifx 17, “param_mohex use_livegfx 1”7, and “param_dfpn
use_guifx 1”7. Note that any such .htp files must be in your hexguiDir directory.

. Program, Connect Local Program: Connects to the benzene executable that you specified.

You can then do everything you could in the terminal, including generating moves and using
its analytic tools (DFPN solver, inferior cell analysis, connection strategies, etc). Note that
all commands are listed in the AnalyzeDialog.

4 Background Reading

I am not going to explain any Hex theory or algorithms here, but simply direct you to the resources
I found to be most useful. Resources are organized by topic, and within each topic are ordered from
basic to more advanced. A complete bibliography of all Hex resources I know of (as of November
2010) is available from Ryan Hayward and/or the UofA Hex website.

4.1

Overview

The basics of Hex, including rules, monotonicity, the no-draw property, strategy-stealing argument,
PSPACE-completeness, and so on. Note that I do not list Reisch’s proof of PSPACE-completeness,
not because this isn’t an important result, but because I have not yet found a decent translation.

1.

2.

4.2

Martin Gardner. Mathematical games. Scientific American articles on Hex, 1957.

Bert Enderton. Answers to infrequently asked questions about the game of Hex.
http://www.cs.cmu.edu/~hde/hex/hexfaq/, 1995.

. Anatole Beck, Michael N. Bleicher, and Donald W. Crowe. Excursions into Mathematics:

the Millennium Edition, chapter 5 (pages 327-339) and Appendix 2000. A.K. Peters, Natick,
Massachusetts, 2000.

. Craige Schensted and Charles Titus. Mudcrack Y and Poly-Y. Neo Press, Peaks Island,

Maine, 1975.

. Shimon Even and R. Endre Tarjan. A combinatorial problem which is complete in polynomial

space. Journal of the Association for Computing Machinery, 23(4):710-719, 1976.

Inferior Cell Analysis

Dead cells, captured cells, vulnerable/dead-reversible, captured-reversible, various forms of domi-
nation (capture, induced path, neighbour, etc), decompositions (split, captured, star), and so on.



4.3

. Craige Schensted and Charles Titus. Mudcrack Y and Poly-Y. Neo Press, Peaks Island,

Maine, 1975.

Ryan B. Hayward. A note on domination in Hex. Technical report, University of Alberta,
2003.

. Yngvi Bjornsson, Ryan Hayward, Michael Johanson, and Jack van Rijswijck. Dead cell anal-

ysis in Hex and the Shannon game. In Adrian Bondy, Jean Fonlupt, Jean-Luc Fouquet,
Jean-Claude Fournier, and Jorge L. Ramirez Alfonsin, editors, Graph Theory in Paris: Pro-
ceedings of a Conference in Memory of Claude Berge, pages 45-60. Birkhauser, 2007.

. Philip Henderson. Playing and Solving the Game of Hex. PhD thesis, University of Alberta,

Edmonton, Alberta, Canada, 2010. Chapters 2 and 3.

. Elwyn Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways for Your Mathe-

matical Plays, volume 1-4. A.K. Peters, 2nd edition, 2000.

. Jack van Rijswijck. Set Colouring Games. PhD thesis, University of Alberta, Edmonton,

Alberta, Canada, 2006.

Connection Strategies

First and second-player connection strategies, common templates, the H-search algorithm, and
augmentations of the H-search algorithm.

1.

4.4

David King. Hall of hexagons - the game of Hex.
http://www.drking.org.uk /hexagons/hex /templates.html, 2007.

. Cameron Browne. Hex Strategy: Making the Right Connections. A.K. Peters, Natick, Mas-

sachusetts, 2000. Chapters 4 and 5.

. Jing Yang, Simon Liao, and Mirek Pawlak. A decomposition method for finding solution in

game Hex 7x7. In Ning [130], pages 96-111.

. Vadim V. Anshelevich. The game of Hex: An automatic theorem proving approach to game

programming. In AAATI2000 [1], pages 189-194.

. Rune K. Rasmussen, Frederic D. Maire, and Ross F. Hayward. A template matching table

for speeding-up game-tree searches for Hex. In Orgun and Thornton [136], pages 283-292.

. Philip Henderson. Playing and Solving the Game of Hex. PhD thesis, University of Alberta,

Edmonton, Alberta, Canada, 2010. Chapters 2 and 4.

Solvers

. Ryan Hayward, Yngvi Bjornsson, Michael Johanson, Morgan Kan, Nathan Po, and Jack van

Rijswijck. Solving 7x7 Hex with domination, fill-in, and virtual connections. Theoretical
Computer Science, 349(2):123-139, 2005.

. L. Victor Allis. Searching for Solutions in Games and Artificial Intelligence. PhD thesis,

University of Limburg, Maastricht, Netherlands, 1994.

. Philip Henderson. Playing and Solving the Game of Hex. PhD thesis, University of Alberta,

Edmonton, Alberta, Canada, 2010. Chapters 2 and 5.



4.5

1.

Players

Thomas R. Lincke. Strategies for the automatic construction of opening books. In Marsland
and Frank [117], pages 74-86.

. Claude E. Shannon. Computers and automata. Proceedings of the Institute of Radio Engi-

neers, 41:1234-1241, 1953.

. Vadim V. Anshelevich. Hexy’s home page. home.earthlink.net/~vanshel/.
. Gabor Melis. Six. six.retes.hu/, 2006.

. S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modification of UCT with patterns in Monte-

Carlo Go, 2006. Technical Report RR-6062.

. Sylvain Gelly and David Silver. Combining online and offline knowledge in UCT. In Ghahra-

mani [74], pages 273-280.

Jack van Rijswijck. Search and evaluation in Hex. Technical report, University of Alberta,
Edmonton, Canada, 2002.

. Philip Henderson. Playing and Solving the Game of Hex. PhD thesis, University of Alberta,

Edmonton, Alberta, Canada, 2010. Chapters 2 and 6.

. Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In Furnkranz et

al. [58], pages 282-293.

5 Conclusion

So, now that you have come this far, maybe you are looking for a summer or thesis project relating
to Hex. There is a thorough list of open problems appearing in Appendix D of Philip Henderson’s
doctoral thesis, so that’s a very good place to start. Below I list a couple additional projects that
do not appear in that appendix:

1.

2.

4.

Implement star decomposition detection, and test its effect on player and solver performance.

Implement common miai substrategy in the H-search algorithm, and test its effect on player
and solver performance.

. Use graph-theoretic/topographical equivalence between solved and explored Hex states to

improve the DFPN solver.

Extend Hex inferior cell analysis to other games, like Y and Havannah.

This should be more than enough material to get started. Enjoy!



