
cmput210 a2 sol feb 2017 30 marks

2. a) Using frequency data from the webnotes (after correcting the frequency for b, which should be .015,
not .01), we have these ciphertext character frequency distributions:

Scheme A: letter ’e’ should take 4 homophones. So:

.081 .001 .027 .042 .032 .032 .032 .031 .022 .020 .061 .070 .002 .008 .040 .024 .067 .075 .019 .001 .060

.063 .091 .028 .010 .024 .002 .020 .001

Scheme B: letter ’e’ takes 3 homophones and letter ’t’ takes 2:

.081 .001 .027 .042 .043 .042 .042 .022 .020 .061 .070 .002 .008 .040 .024 .067 .075 .019 .001 .060 .063

.046 .045 .028 .010 .024 .002 .020 .001

Scheme C: letters ’a’, ’c’ and ’t’ each take 2 homophones:

.041 .040 .001 .027 .042 .064 .063 .022 .020 .061 .070 .002 .008 .040 .024 .067 .075 .019 .001 .060 .063

.046 .045 .028 .010 .024 .002 .020 .001

Which of these 3 distributions is smoothest? One measure of this is index of coincidence: the lower the
index of coincidence, the smoother the distribution. You can use a python program from the course
gitcode repo to compute the ioc of each of these: set C has the smallest ioc. So, as an encrypter, we
would prefer Scheme C.

b) In percent, before smoothing, we expect top 11 frequencies 13 9 8 7.5 7 6.5 6.5 6 6 4 4. . .

So after A we expect the 13 is replaced by 4 counts of around 3.25, so the top 10 frequencies will be
something like 9 8 7.5 7 6.5 6.5 6 6 4 4 . . .

after B, 13 is repaced by 4.3 4.3 4.3 and 9 by 4.5 4.5, so for top 10 we expect 8 7.5 7 6.5 6.5 6 6 4.5 4.5
4.3. . .

after C, 13 is repaced by 6.5 6.5, 9 by 4.5 4.5, 8 by 4 4, so top 10 7.5 7 6.5 6.5 6.5 6.5 6 6 4 4. . .

Here, the top 10 ctxt frequencies, in percent, are 9 9 9 6.7 6.7 5 5 5 5 4 . . .

It is hard to say which of these 3 fits the data best.

c) we know that e,a,s have 2 homophones each, every other character has only 1. so maybe we will have
luck by focussing on the most usually-frequent letter that has only 1 homophone: t. the good news is
that t has an unusual digram frequency patter: th is very common. below is one way to crack this.

run freq/freq.py

from pairs, guess ctxt jx => th

abcdefghijklmnopqrstuvwxyz

.........t.............h..

jxyimzljxtiqctouzhjxzjjxeczifxtbyffulmzlrhtqaydwjxtsyfxthevcqhogkutdevlsejl

th.....th.........th.tth.....h..................th....h..................t.

guess ’that’, so ctxt z => a

abcdefghijklmnopqrstuvwxyz

.........t.............h.a

jxyimzljxtiqctouzhjxzjjxeczifxtbyffulmzlrhtqaydwjxtsyfxthevcqhogkutdevlsejl

th...a.th.......a.thatth..a..h........a.........th....h..................t.

(guessing ctxt x is h) so frequent ctxt xt => he, so t => e

abcdefghijklmnopqrstuvwxyz

.........t.........e...h.a

jxyimzljxtiqctouzhjxzjjxeczifxtbyffulmzlrhtqaydwjxtsyfxthevcqhogkutdevlsejl

th...a.the...e..a.thatth..a..he.......a...e.....the...he..........e......t.

ctxt y probably vowel, try y => i

abcdefghijklmnopqrstuvwxyz

.........t.........e...hia

jxyimzljxtiqctouzhjxzjjxeczifxtbyffulmzlrhtqaydwjxtsyfxthevcqhogkutdevlsejl

thi..a.the...e..a.thatth..a..he.i.....a...e..i..the.i.he..........e......t.

guess 1st word ’this’ so i => s

abcdefghijklmnopqrstuvwxyz

........st.........e...hia

jxyimzljxtiqctouzhjxzjjxeczifxtbyffulmzlrhtqaydwjxtsyfxthevcqhogkutdevlsejl

this.a.thes..e..a.thatth..as.he.i.....a...e..i..the.i.he..........e......t.

guess 2nd word ’was’ so mzl => was

abcdefghijklmnopqrstuvwxyz

........st.sw......e...hia

jxyimzljxtiqctouzhjxzjjxeczifxtbyffulmzlrhtqaydwjxtsyfxthevcqhogkutdevlsejl

thiswasthes..e..a.thatth..as.he.i...swas..e..i..the.i.he..........e...s..ts

have guessed txztyiml, maybe next most frequent ctxt character e => o

abcdefghijklmnopqrstuvwxyz

....o...st.sw......e...hia

jxyimzljxtiqctouzhjxzjjxeczifxtbyffulmzlrhtqaydwjxtsyfxthevcqhogkutdevlsejl

thiswasthes..e..a.thattho.as.he.i...swas..e..i..the.i.he.o........e.o.s.ots

guess ’thomas’ and ’scots’ so cs => mc

abcdefghijklmnopqrstuvwxyz

..m.o...st.sw.....ce...hia

jxyimzljxtiqctouzhjxzjjxeczifxtbyffulmzlrhtqaydwjxtsyfxthevcqhogkutdevlsejl

thiswasthes.me..a.thatthomas.he.i...swas..e..i..theci.he.o.m......e.o.scots

guess ’cipher’ so fh => ph

abcdefghijklmnopqrstuvwxyz

..m.op.rst.sw.....ce...hia

jxyimzljxtiqctouzhjxzjjxeczifxtbyffulmzlrhtqaydwjxtsyfxthevcqhogkutdevlsejl

thiswasthes.me..arthatthomasphe.ipp.swas.re..i..theciphero.m.r....e.o.scots

guess ’phelippes ofmaryqueenofscots’ buvqogkd => lefayqun

abcdefghijklmnopqrstuvwxyz

.lmnopqrstusw.y.a.ceef.hia

jxyimzljxtiqctouzhjxzjjxeczifxtbyffulmzlrhtqaydwjxtsyfxthevcqhogkutdevlsejl

thiswasthesameyearthatthomasphelippeswas.rea.in.thecipherofmaryqueenofscots

finally ’breaking’

abcdefghijklmnopqrstuvwxyz

klmnopqrstusw.y.abceefghia

jxyimzljxtiqctouzhjxzjjxeczifxtbyffulmzlrhtqaydwjxtsyfxthevcqhogkutdevlsejl

thiswasthesameyearthatthomasphelippeswasbreakingthecipherofmaryqueenofscots

3. i) (5*4 + 2*1 + 3*2)/(10*9) = (20 + 2 + 6)/90 = 28/90 = 0.3111...

ii) (3*2 + 2*1 + 2*1 + 2*1)/(9*8) = (6 + 2 + 2 + 2)/72 = 12/72 = 0.1666...

iii) (5*3 + 2*2 + 3*2 + 0*2)/(10*9) = (15 + 4 + 6 + 0)/90 = 25/90 = 0.2777...

iv) (5/10)*0.081 + (2/10)*0.001 + (3/10)*0.027 = 0.0405 + 0.0002 + 0.0081 = 0.0488... Every other
character contributes 0 to the imc and so can be omitted.

4. i) npojgwym hbhomw betcsx

ii) the additions that need to be performed with keyword babyface are 1 0 1 -1 5 0 2 4 respectively.
these are easy to do by examining an alphabet and counting. the additions for keywordviginere are
-5 8 7 8 13 4 -9 4. performing these shifts by hand is more likely to result in errors, since the shifts are
greater. so prefer babyface. (and hey! why did no one comment on the misspelling of vigenere?)

5. i)

Here is the output from running kgrams.py. Beside
each number I have listed factors. The most common
keyword length is 3. this is supported by the Bab-
bage/Kasiski test, but since there are no repeated

kgrams for k at least 3, we would expect many

false positives, and so we would expect this test

might be unreliable for this case.

check for repeated 2 -grams

103 za 103

21 dp 3 7 21

93 pg 3 31

87 ae 3 19

23 ei 23

48 il 2 3 4 6 8 12 24 48

82 ey 2 41

24 pp 2 3 4 6 8 12 24

66 pc 2 3 33

48 op 2 3 4 6 8 12 24 48

43 hp 43

53 sh 53

24 ti 2 3 4 6 8 12 24

16 gp 2 4 8 16

check for repeated 3 -grams

ii) the program suggests the most probable length is 8, with most likely key polyaleh. this is supported
by the ioc data: length 8 has ioc .064, the next best shift has ioc .05. since the correct shift would give
an expected ioc close to that of English, about .065, there is only 1 obvious candidate here: keyword
length 8.

iii) the suggested shift of the 2nd last character is shift 4 (keyletter e), with English-imc .075. Notice

that there is one other strong candidate: shift 15 (keyletter p) with English-imc .070.

Shift 4 gives keyword polyaleh. Shift 15 gives keyword polyalph.

iv) The best key found by the program is not the correct key.

Here is text deciphered using key polyaleh:

babbagpw asinsptr edtoatee mptadeni phermeyt byanexnh angeofwe tterswtt

hthwaiee sadentts tfrombci stolwieh aratheci nnocenev iewofctp hers

This almost makes sense: 7 out of 8 characters make sense.

babbagpw asinsptr edtoatee mptadeni should probably be

babbagew asinspir edtoatte mptadeci.

The key suggested in part iii) — polyalph, a prefix of polyalphabetic, is the correct key. The plaintext
is

babbagewasinspiredtoattemptadeciphermentbyanexchangeofletters

withthwaitesadentistfrombristolwitharatherinnocentviewofciphers

Both choices in iii) had very high imc with English, one by coincidence, and one because it was correct.

iv)

lp + ec yields ei (1st occurence)

al + ex yields ei (2nd occurence)

So the false positive is as shown below

polyalphpolyalphpolyalphpolyalphpolyalphpolyal keyword

babbagewasinspiredtoattemptadeciphermentbyanex plaintext

qomzartdpgtlsaxytremaeilbdeydprpevppmpcaqmllei ciphertext

.....lp.al.. keyword

.....tt.ex.. plaintext

.....ei.ei.. ciphertext

