1. **Claim.** For any game G, $G + 0 = G$.

 Complete the following proof by induction. ϕ is the empty set.

 For any games $G = \{G^L \mid G^R\}$ and $H = \{H^L \mid H^R\}$ with G^L the set of left options of G, and G^R, H^L, H^R defined similarly, the sum $G + H$ is defined as $\{G^L + H, G + H^L \mid G^R + H, G + H^R\}$, where $G^L + H$ is the set, for all X in G^L, of all games ________________ . $G + H^L, G^R + H, G + H^R$ are defined similarly. ‘,’ represents set union. 0 is the game $\{|\}$, i.e. $\{0^L \mid 0^R\}$ where $0^L = 0^R = (\text{circle one}) \phi \quad \{0\} \quad \{1\} \quad \{|\}$.

 By definition, $G + 0 = \{G^L + 0, G + 0^L \mid G^R + 0, G + 0^R\}$.

 (1) But $G^L + 0 = G^L$ because

 __ .

 Similarly, $G^R + 0 = G^R$. Also, 0^L is empty because __, so $G + 0^L$ is empty because $G + 0^L$ is defined as __

 and __.

 Similarly, the set $G + 0^R$ is empty. So the set $G^L + 0, G + 0^L$ equals the set G^L, ϕ which equals the set G^L.

 Similarly, $G^R + 0, G + 0^R$ equals G^R. So, from (1) we have $G + 0 = \{G^L \mid G^R\} = G$.

2. Let A, B, C, D be the domineering games below. In each case, give the outcome class. Justify briefly.

 A _____ B _____ C _____ D _____

 $A + B$ _____ $A + C$ _____ $C - B$ _____ $C + D$ _____

 ![Images of games A, B, C, D]