1. In this Hex position, find all pairs x, y, both empty, such that B-coloring x kills y.

2. Repeat 1) for W-coloring.

3. Consider any Hex position with B to play, with x, y as in 1), and with y a winning B-move. Explain why x is also a winning B-move.

4. Consider any Hex position with B to play, with x, y as in 2) (each is empty and W-coloring x kills y) and with y a winning B-move. Explain why there is some empty cell z different from both x, y such that z is a winning B-move.

5. In the position, give the number of different winning W moves.

6. Repeat 5) for B.

7. Recall: for a Hex position, a set S is B-captured if B has a second-player strategy on S that leaves every cell in S dead or B. For the position above:
 (i) why is $\{b4, c4\}$ B-captured?
 (ii) after a B-move at $c2$, why is $\{b3, c3, c4, d4\}$ is B-captured?
 (iii) when searching for a winning B-move, why can we ignore these sets? $\{b3, c3, c4, d4\}$ $\{a1, b1\}$ $\{d1\}$ $\{b2, a3\}$ (hints: mustplay, capture, dead)
 (iv) find all winning B moves
 (v) find all winning W moves

8. In your own words, explain briefly why there are no Hex P-positions (you don’t need to give a complete proof). Is the position above an N-position, B-position, or W-position?

9. Recall: 0 is the game $\{|\}$, $*$ is the game $\{0|0\}$, 1 is the game $\{0|\}$. Define A as game $\{0|-1\}$, B as game $\{0|-2\}$, C as game $\{A, B | *\}$. For games, recall that $X \geq Y$ means that $X - Y$ is a P-position or an L-position.
 (i) Prove or disprove: $A \geq B$.
 (ii) When L plays C, explain why L prefers option A to option B.
 (iii) Find the simplest game D such that $C = D$. Justify briefly.