1. **Prove or disprove.** For any Hex position H where neither player has yet won and White has a 2nd-player winning strategy S_2, White also has a 1st-player winning strategy S_1. Hint: strategy stealing.

2. **Claim.** For any game G, $G + 0 = G$. Complete the following **proof by induction.**

Recall that in the definition $G + H = \{G^L + H, G + H^L \mid G^R + H, G + H^R\}$

G^L is the set of all games that are left options of G,

$G^L + H$ is ___

and the comma means “take the union of these two sets”.

0 is the game with no options for R or L, i.e. $0 = \{\mid \}$. Let $G = \{G^L \mid G^R\}$ where G^L is defined as

__

By the definition of game sum, $G + 0 = \{G^L + 0, G + 0^L \mid G^R + 0, G + 0^R\}$. (1)

But $G^L + 0 = G^L$ because ___.

Similarly, $G^R + 0 = G^R$.

Also, the set of games 0^L is empty because ___,

so the set of games $G + 0^L$ is empty because here the + operator means

__.

Similarly, the set of games $G + 0^R$ is empty.

So the set $G^L + 0, G + 0^L$ equals the set G^L, ϕ which equals the set G^L.

Similarly, $G^R + 0, G + 0^R$ equals the set G^R.

So, from (1) we have $G + 0 = \{G^L \mid G^R\}$ which is equal to __.

3. 0, 1, −1, * are (resp.) games $\{|\}$, $\{0\}$, $\{|0\}$, $\{0|0\}$. Q is $\{1|−1\}$. Express each using only symbols $\{\} |$.

4. (i) Let Z be any game in outcome class P. Let G be any game. Explain why the outcome class of G equals the outcome class of $G + Z$. (ii) Using (i) and the definition of game equality, prove that $Z = 0$.

5. (i) Find domineering games A, B in respective outcome classes L, N such that $A + B$ is in L.

(ii) Repeat (i), so that $A + B$ is in N. (iii) Prove that there is no such A, B with $A + B$ in R or P.

6. For the 5x6 chomp position with the upper-right cell removed (so, 29 cells remain), find all winning moves. Hint: use the program from class.

7. (20,21) is the chomp position with 2 rows: the top row has 20 cells, the bottom has 21. Prove that this is a P-position. Hint: pair cells so that if the opponent plays in one, you play in the other.