1. Recall Conway’s definition of game sum: \(G + H = \{ G^L + H, G + H^L | G^R + H, G + H^R \} \).
 In this notation, what does \(G^L + H \) mean? Answer in your own words. Also answer by assuming that \(G^L = \{ G_1, \ldots, G_t \} \), and then write the answer as a set.

2. Recall that game 0 is \(\{ | \} \), game 1 is \(\{ 0 | \} \). Using the definition of \(-G\), show that the negative of game 1 is game \(-1\), i.e. \(\{ | 0 \} \).

3. For the game \(G = \{ G^L | G^R \} \), recall that \(-G\) is defined as \(\{ -G^R | -G^L \} \). In this notation, assuming \(G^L = \{ G_1, \ldots, G_t \} \), what does \(-G^L\) mean. Answer in your own words, and also by giving the answer as a set.

4. Using the definition of \(-G\), prove that \(-(-G) = G\).

5. Draw the game tree for \(G = \{ 0 | 0, * \} \) and find a clobber game with this tree (hint: try a line of 4 stones). Recall that * is the game \(\{ 0 | 0 \} \). Explain the difference between game * and game 0. (What are their game trees? What outcome class is each is?)

6. In class, we saw that any game that is a P-position behaves like 0 in sum: if \(Z \) is a P-position and \(X \) is any game, then the outcome class of \(X + Z \) is the same as the outcome class of \(X \). Prove this result.

7. Prove that the game \(1 = \{ 0 | \} \) not not behave like zero: find a game \(V \) such that \(V \) and \(V + 1 \) are in different outcome classes.

8. Let \(W \) be any game that is not a P-position (so it must be an L-position or an R-position or an N-position). Prove that \(W \) does not behave like 0: find a game \(V \) such that \(V \) and \(V + W \) are in different outcome classes.

9. Let \(A \) be the clobber game \(xxo \). Let \(B \) be the clobber game \(xo \).
 For each game, either explain why it is a P-position, or draw its game tree: