1. Hex. (i) Draws are not possible. For any positive integer \(n \), prove that the empty \(n \times n \) board is an \(N \)-position.

 (ii) Prove that each of these is an \(L \)-position (so bLack wins as first player and as second player).

 \[
 \begin{array}{cccc}
 B & B & B & B \\
 W & . & W & W \\
 W & . & W & W \\
 B & W & . & W \\
 B & B & W & . \\
 B & B & B & \\
 \end{array}
 \]

2. For each game, for each outcome class \(L, R, N, P \), give a position in that class, or explain why there is none:

 - nim
 - hackenbush
 - green hackenbush
 - domineering
 - cram

 2x2 hex (define any hex position in which any player has already won as a \(P \)-position).

 2x2 go, komi 1/2. (final net score is black stones+territory \(-\) (0.5 + white stones+territory).)

3. Go. are these x-groups unconditionally safe? safe under alternating play? explain.

 \[
 \begin{array}{cc}
 x & x \\
 x & x \\
 \end{array}
 \]

4. Describe the game \(\{ | 0, -1 \} \) using only these symbols: \{ \} | ,

5. Draw a 4-cell domineering position whose game notation is \(\{ | 0, -1 \} \).

6. For every domineering position with at most 4 cells, give the game notation and draw the game tree.

7. Below is the sum table for the classes \(P, L, R, N \). Prove that each entry is correct.

 E.g. for row \(P \) and column \(L \), you need to prove that if \(G \) is a \(P \)-position and \(H \) is an \(L \)-position, then \(G + H \) is an \(L \)-position. \(? \) means that every outcome class is possible, so for row \(L \) and column \(R \) you need to do this: prove that if \(G \) is an \(L \)-position and \(H \) is an \(R \)-position, then \(G + H \) can be in any of the four classes (so give examples for \(G, H \) for each case). \(L/N \) means \(L \) or \(N \).

 \[
 \begin{array}{ccccc}
 & P & L & R & N \\
 \hline
 P & P & L & R & N \\
 L & L & ? & L/N \\
 R & R & R/N \\
 N & ? \\
 \end{array}
 \]