games that are numbers

finite:
integers
dyadic rationals

infinite:
integers
rationals
reals
surreals

integers (definition)

$$
\begin{aligned}
0 & =\{\mid\} \\
1 & =\{0 \mid\} \\
2 & =\{1 \mid\} \\
\ldots & \\
-1 & =\{\mid 0\} \\
-2 & =\{\mid-1\} \\
\ldots & \\
k & =\{k-1 \mid\} \\
-k & =\{\mid-(k-1)\}
\end{aligned}
$$

dyadic rationals (definition)

for integers m odd, t positive,

$$
\begin{aligned}
m / 2^{t} & =\left\{(m-1) / 2^{t} \mid(m+1) / 2^{t}\right\} \\
\text { e.g. } 9 / 4 & =\{8 / 4 \mid 10 / 4\} \\
& =\{2 \mid 5 / 2\}
\end{aligned}
$$

exercise: let $g=7 / 8, h=1 / 2+1 / 4+1 / 8 \quad$ prove $h=g$

$$
\begin{gathered}
\text { hint: } \quad h^{L}=\{1 / 4+1 / 8,1 / 2+1 / 8,1 / 2+1 / 4\} \\
h^{R}=\{1+1 / 4+1 / 8,1 / 2+1 / 2+1 / 8,1 / 2+1 / 4+1 / 4\}
\end{gathered}
$$

simplest number (definition)

let $g=\left\{x^{L} \mid y^{R}\right\}$ with each x_{j}, y_{k} number and $x^{j}<y_{k}$ let $x_{+}=\max \left\{x^{L}\right\} \quad y_{-}=\min \left\{y^{R}\right\}$
simplest number $s(g)$:
in $\left(x_{+}, y_{-}\right)$, some int ? $\quad s(g)=$ min.abs.val. int else: \quad in $\left(x_{+}, y_{-}\right), \quad s(g)=j / 2^{t}$ with $\min t$
theorem: $g=s(g)$

$$
\begin{array}{cc}
\text { e.g. } & g=\{-15 / 8 \mid-7 / 16\} \\
g=\{3 / 8 \mid 3 / 4\} & s(g)=1 / 2 \\
g=\{3 / 8 \mid 5 / 2\} & s(g)=1 \\
g=\{27 / 16 \mid 15 / 8\} & s(g)=7 / 4
\end{array}
$$

$$
\begin{array}{ll}
& \text { lemma: int } n \geq 0, \quad \text { depth of } \pm n \text { is } \quad n \\
t \geq 1 \quad 0<j \text { odd }<2^{t} \quad \text { depth of } \pm\left(n+j / 2^{t}\right) \text { is } \quad n+t
\end{array}
$$

theorem: g number iff $g^{L}<g<g^{R}$ and g^{L}, g^{R} numbers
for finite games, above theorem holds for ints, dyadic rationals

Conway: for infinite games, above theorem holds for ints, rationals, reals, surreals

number avoidance theorem

$$
\begin{gathered}
\text { game } g=x+h \quad x \text { number, } \quad h \text { not number } \\
L \text { has winning move on } g ?
\end{gathered}
$$

then L can win by playing on h
e.g. find a winning L-move on $g=2+*$

exercise
find $s(g)$, the simplest number equal to $g=\{3 / 8 \mid 7 / 8\}$
answer
in interval $(3 / 8,7 / 8)$, we seek $m / 2^{t}$ with smallest 2^{t}
candidates: $\quad 4 / 8=1 / 2 \quad 5 / 8 \quad 6 / 8=3 / 4 \quad 7 / 16 \ldots$
$s(g)=1 / 2$
exercise check previous answer with canonical form theorem
$g=\{3 / 8 \mid 7 / 8\} \quad$ can we prune any dominated option?
no only 1 L-option, only 1 R-option
$g=\{3 / 8 \mid 7 / 8\} \quad$ is either option reversible ?
consider L-option
R can reverse $3 / 8$ to $1 / 2 \quad \mathrm{R}$ prefers $1 / 2$ to g ?
$1 / 2 \geq g ? \quad 1 / 2=g ? \quad 1 / 2<g ?$
$1 / 2=g ? \quad s=g+\{-1 \mid 0\}$ is \mathbf{P}-position?

L can play s to $3 / 8-1 / 2$: R will win
L can play s to $g-1$: \mathbf{R} will win
R can play s to $g: \mathrm{L}$ will win (exercise)
R can play s to $7 / 8-1 / 2: \mathrm{L}$ will win (exercise)
so s is P -position, woo hoo :)
so R reverses $3 / 8$ to $1 / 2 \quad g=\{3 / 8 \mid 7 / 8\}=\{0 \mid 7 / 8\}$
final exercise: show right option of g reverses to 1
so L reverses $7 / 8$ to 1
$g=\{0 \mid 7 / 8\}=\{0 \mid 1\}$
conclusion: $s(g)=1 / 2$ woo hoo :)

