
CGT lectures 2021 (revised 2026)

some cgt lectures, based on based on 2021

I suggest that you also take your own notes



week 1 (lectures 1-2, Jan 6-8 2026)

• syllabus

https://webdocs.cs.ualberta.ca/~hayward/cgt/jem/cgt.html

• def’n: com’l game, normal play

• rules of clobber

• who wins alternating-full-grid 4×4 clobber?

• def’n: CG tree notation, CG {|} notation

• def’n: games 0, ∗, ↑, ↓

• rules of go

https://webdocs.cs.ualberta.ca/~hayward/355/rules.pdf



clobber

L player Left (also bLack, x)

R player Right (also whiTe, o)

N-psn (first player win)

P-psn (first player loss)

L-psn (L wins as 1st and 2nd player)

R-psn (R wins as 1st and 2nd player)

e.g. clobber

ox in N

oxox ?

assume w.l.o.g. L plays first



tree of all cont’ns of game

tree of all possible continuations of the game ?

say x plays first

oxox

/ | \

x_ox o_xx oxx_

| |

x__o _ox_

|

_x__



combinatorial game

comb’l game: 2-player, alt.-turn, finite, perf.-info,

deterministic

WLD game: comb’l game with every outcome win or

loss or draw

win-strat: a guaranteed winning strategy

draw-strat: in WLD game, a guaranteed non-losing

strategy

ptm: player-to-move optm: opponent-to-move

Zermelo’s theorem: in WLDg, one of the following

holds

• ptm has win-strat

• optm has win-strat

• ptm and optm each have draw-strat



a simple game

2p alt-turn

B wins with vertical column

W wins with horizontal row

next page: game dag (directed acyclic graph)





Z’s thm: proof by induction

• game g with options to g1, . . . , gt

• by inductive assumption, theorem holds for g1, . . . , gt,

so each gj outcome is + (ptm-win), − (optm-win),

or 0 (ptm-draw and optm-draw)

• case A: some gj outcome −, then g ptm-win (why?)

• case B: not case A and some gj outcome 0, then g

ptm-draw (why?) and optm-draw (why?)

• case C: not case A,B (each gj outcome 1), then g

optm-win (why?)

exercise: where does prove use that g is finite?



back to linear clobber

• who wins ox12 ? (oxoxoxoxoxox)

• game x { | } call this game 0

• game ox { 0 | 0 } call this game ∗

• game oxx { 0 | * } call this game up

• game oox { * | 0 } call this game down

• game oxox { 0, *, up | 0, *, down }



hex

• no draw

• extra stones

• 1pw

• 2pw (irregular)

• virtual connections, mustplay

hex talk

https://webdocs.cs.ualberta.ca/~hayward/talks/twist2.pdf

hex page on CMPUT 355

https://webdocs.cs.ualberta.ca/~hayward/355/jem/hex.html

hex-the-full-story via ualberta ccid

https://www.taylorfrancis.com/books/hex-inside-ryan-hayward-bjarne-toft/10.1201/9780429031960



chomp

Fred Schuh 1952, David Gale 1974, Martin Gardner

1973

https://en.wikipedia.org/wiki/Chomp

https:

//www.win.tue.nl/~aeb/games/chomp.html



lec 3

• ??

lec 4

• cram

• equivalence def’n g ≡ h iff g +−h ∈ P

lec 5

• for arbitrary games g, j, k, how to prove g + h ≡ k?

• prove domineering 2×2 = ±1

• for g = clobber xoxoox, prove g +±1 ∈ N

lec 6

• practise small-board go https://www.cosumi.net/en/

• from outcome classes to algebra: ≡ ≧ ≦ ||

• simple table



week 10. all numbers

• integers done

• dyadic rationals done

• non-dyadic rationals ?

• irrationals ?



http://webdocs.cs.ualberta.ca/~hayward/cgt/asn/rationals.pdf



week 9. numbers plus

http://webdocs.cs.ualberta.ca/~hayward/cgt/asn/21/mar23.pdf



week 8. numbers

• warmup

http://webdocs.cs.ualberta.ca/~hayward/cgt/asn/21/wk9.pdf









http://webdocs.cs.ualberta.ca/~hayward/cgt/asn/21/mar11.pdf



week 7. writing, theorem, quiz



writing

• links

https://webdocs.cs.ualberta.ca/~hayward/writing.html

• Cormac McCarthy

http://webdocs.cs.ualberta.ca/~hayward/papers/mccarthy-tips.pdf

• George Orwell

https://www.mhpbooks.com/6-writing-rules-from-george-orwell/



CF I: pruned dominated options (review)

if G = {SL | SR} with SL = {L1, L2, . . .} and L1 < L2

then G = {SL\L1 | SR} = {L2, . . . | SR}

if G = {SL | SR} with SR = {R1, R2, . . .} and R1 > R2

then G = {SL | SR\R1} = {SL |R2, . . .}

Proof (idea): use definition of equality.

example: simplify G = {0, ∗, 1, 2 | 0, ∗, 1, 2}

0 < 1 < 2 and ∗ < 1

so SL = {2}, SR = {0, ∗}

so G = {2 | 0, ∗}



CF II: reversible options

http://webdocs.cs.ualberta.ca/~hayward/cgt/asn/21/wk8.pdf



week 6. partial order, canonical form



partial order

• review: does clobber(xxo) equal clobber(xo)?

• notation: 1∗ vs ∗1

• beyond = 0: < 0 > 0 || 0

• beyond G = H: G < H G > H G ||H

• transitive?

• recall: some games are numbers: 1, −1, 1/2, . . .

http:
//webdocs.cs.ualberta.ca/~hayward/cgt/asn/21/wk7.pdf



canonical form

• games born on day 0 (depth 0) { | } 0

• games born on day 1 (depth 1) 1, −1, ∗

• games born on day 2 (depth 2) ?

• canonical form: notationally shortest

• can.form theorem part I: dominated options

• can.form theorem part II: reversible options

http:
//webdocs.cs.ualberta.ca/~hayward/cgt/asn/21/wk8.pdf



Hearn’s review

http://webdocs.cs.ualberta.ca/~hayward/cgt/asn/hearn-WW.pdf



some exercises

• what game is clobber(xo)? assume x is Left

• what game is clobber(xxo)? assume x is Left

• simplify 1∗

• 0 is the only game born on day 0.

1, -1, ∗ are the only games born on day 1.

Draw the Hasse diagram for these four games.

For each pair of these games, prove how they are related:

A = B? A < B? A > B? A||B?

• prove 1 > ↑



• clobber(xo) is {0 | 0}, called star, symbol ∗

• clobber(xxo) is {0 | ∗}, called up, symbol ↑

• 1∗ = {∗, 1 | 1} = {1 | 1} since 1 > ∗

• 1 > 0

why? def’n > 0

• 0 > −1

why? def’n A > B

• 1 > −1

why? def’n A > B, −(−A) = A

• 1 > ∗

why? def’n A > B, −∗ = ∗, ∗∗ = 0

• ∗ > −1

why? def’n A > B, −(−1) = 1

. . . or prove X > Y iff Y < X

• 1 > −1

why? def’n A > B, 2 > 0

. . . or prove > transitive

• ∗ || 0

why? def’n || 0

• 1 > ↑

def’n >, 1+ ↓= {↓, 1 ∗ | 1}

L plays to 1∗ = {1|1}, R forced to 1, L to 0

R forced to 1, L to 0 1+ ↓ is L-psn



week 5. impartial: equal, sum, nimbers, hex

announcements

• proj part 1 marked, if you want a bump in your mark, send me revisions
by Friday

• quiz Thursday

• if you would like to help proofread a new book on Hex, let me know

• anything else ?



partial (or impartial) impartial

not’n G = { GL | GR } G = { GP1 }

oc L, R, P, N P, N

game 0 { | } { }

G = 0 G is P-psn same

neg(G) { −GR | −GL } { −GP1} = { GP1} = G

G+H { GL +H,G+HL | GR +H,G+HR } { GP1 +H,G+HP1 }

G = H iff G−H = 0 iff G+H = 0



nimbers

def’n: ∗n is 1-pile n-stone nim game

∗0, ∗1, ∗2, ∗3, . . . are called nimbers

trees for ∗0 ∗1 ∗2

summing nim games

prove/disprove: ∗1 + ∗2 = ∗3

proof:

use def’n of game sum

then prove by induction: ∗0 + ∗n = ∗n

then finish proof

∗1 + ∗2 = { ∗0 + ∗2, ∗1 + ∗0, ∗1 + ∗1 }

= { ∗2, ∗1, ∗0 }

= { ∗0, ∗1, ∗2 }

= ∗3



prove/disprove: ∗1 + ∗3 = ∗2

use def’n of game sum

∗1 + ∗3 = { ∗0 + ∗3, ∗1 + ∗0, ∗1 + ∗1, ∗1 + ∗2 }

∗1 + ∗3 = { ∗3, ∗1, ∗0, ∗3 }

= { ∗0, ∗1, ∗3 }

= ?

that didn’t work ! why ?



prove: ∗1 + ∗3 = ∗2

use equality theorem: G = H iff G−H = 0 iff (when impartial) G+H = 0

∗1 + ∗3 = ∗2 iff ∗1 + ∗3 + ∗2 = ∗0 iff ∗1 + ∗2 + ∗3 = ∗0

so we want to show ∗1 + ∗2 + ∗3 is a P-psn.

we already know that, because nimsum(1 + 2 + 3) = 0.



nimber sum theorem

as a comb. game,

a sum of nimbers equals the nimber of

the nimsum of the corresponding integers

∗1 + ∗2 = ∗nimsum(1 + 2)

= ∗nimsum(0b 01 + 0b 10)

= ∗nimsum(0b 11)

= ∗3

∗1 + ∗3 = ∗nimsum(1 + 3)

= ∗nimsum(0b 01 + 0b 11)

= ∗nimsum(0b 10)

= ∗2

∗5 + ∗9 + ∗15 = ∗nimsum(5 + 9 + 15)

= ∗nimsum(0b 101 + 0b 1001 + 0b 1111)

= ∗nimsum(0b 11)

= ∗3



hex

• no draw

• extra stones

• 1pw

• 2pw (irregular)

• virtual connections, mustplay

hex talk

https://webdocs.cs.ualberta.ca/~hayward/talks/twist2.pdf

hex page on CMPUT 355

https://webdocs.cs.ualberta.ca/~hayward/355/jem/hex.html

hex-the-full-story via ualberta ccid

https://www.taylorfrancis.com/books/hex-inside-ryan-hayward-bjarne-toft/10.1201/9780429031960



week 4. dom, equal, iso, sum, chomp, hack



recall domineering

1

2

3

4

5

6

a b c d e f

• R right, white, horizontal

• L left, black, vertical

• for position above

– assume R-to-play, who wins ?

– assume L-to-play, who wins ?

– outcome class P, N, L, R ?

• how to answer above questions easily?

• answers

– R

– L

– N



equals 0

• 0 is the game { | }

• we care about outcome class

• we care about sums (decomposing a game into independent subgames)

• mot’n: 0 is useless in any sum

• def’n: G = 0 iff G is a P-position (2nd-player win)



CG tree

• given position is root

• each left option is left child

• each right option is right child

• how does this differ from

game tree (of not-nec. comb. game) ?



CG isomorphism

• G,H isomorphic iff

their CG trees are isomorphic



CG negation

• how are G and H related?

• G + H = 0 proof: tweedledee tweedledum

• G = −H notation

• for G = { GL | GR }

define −G as { −GR | − GL }

• example: say G = {A,B | C}, then

−G =



CG equality

• oc(G) outcome-class(G)

• mot’n

G equals H iff they behave the same in any CG sum

• def’n

G = H iff

for all CG X, oc(G+X) = oc(H +X)

• theorem.

G = H iff G−H = 0

i.e. G = H iff G+−H is a P-psn



chomp

Fred Schuh 1952, David Gale 1974, Martin Gardner 1973

https://en.wikipedia.org/wiki/Chomp

https://www.win.tue.nl/~aeb/games/chomp.html



hackenbush

Conway 1970

https://www.youtube.com/watch?v=DrtMWZbh1so

http://geometer.org/hackenbush/index.html

http://geometer.org/mathcircles/hackenbush.pdf

Elwyn Berlekamp Hackenbush part 1: inequalities

https://www.youtube.com/watch?v=omh4t8gZZcE



exercises

0 defined as { | }

1 defined as { 0 | }

−1 defined as { | 0 }

∗ defined as { 0 | 0 }

for each question, answer and prove

1. does this domineering game equal 0?

2. for any game X, is X + 0 isomorphic to X?

3. for any games A and B,

is A+ B isomorphic to B + A?

4. does 1− 1 = 0 ?

5. does + = ?

6. find simplest CG tree whose game equals



domineering game D

D’s CG tree

D in game notation { 0 | 0 }

is D a P-position?

no, it’s the game ∗, an N-position

D 6= 0



is X + 0 isomorphic to X?

yes, argue by induction on depth of CG tree of X

(sketch of proof)

left options of X + 0 are the same as the left options of X, because there is
no left option in the subgame 0

similarly, right options of X + 0 are the same as the right options of X

so, yes, X + 0 is isomorphic to X



for any games A and B, is A+ B isomorphic to B + A?

yes (exercise for you :)



define Z as game 1− 1

Z in game notation? { 0− 1 | 1− 0 }

iso to { −1 | 1 }

why?

L’s only option is to play on subgame 1, move subgame to 0, leaves game
0− 1, same game (by definition of our notation) as 0 + −1, iso to −1 + 0,

iso to −1

similarly, R’s only option is to play on subgame −1, leave game 1



+ = ?

iff + − = 0

iff + − is a P-psn

iff + + is a P-psn



+ +

up to symmetry, L can play only to one of these games:

+

+

exercise: in each case, show R can now win

conclusion: if L plays first on this game, R wins

+ +



+ +

up to symmetry, R can play only to one of these games:

+ +

+ +

exercise: in each case, show L can now win

conclusion: this game is a P-psn woohoo!

+ +



we have seen + =

in other words, + = 1

so what should we call ?

we call this domineering game 1/2



which is CG tree of ? find each pair of trees

whose games are equal. prove/disprove.

A B C

D E

F



example. E = F . why?

E F

informally:

in F, L’s second option is always at least as good for L as L’s first option

formally:

prove E − F is a P-psn



week 3. cram, CG notation, FTCG, quiz



cram

• cram like domineering, except on each turn, each player can use either
tile (horizontal, vertical)

• https://en.wikipedia.org/wiki/Cram_(game)

• e.g. who wins cram(2×3)? what is an optimal strategy?

. . .

. . .

H H . V . . . V .

. . . V . . . V .

H H V H H . H H . V H H V V .

. . V H H . . H H V . . V V .

. . .

. . .

/ | \

. . . . + .

. . . . . . .

/ | | |

. . 0 . . . .



notation

game graph means game directed-acyclic-graph

domineering game below: game graph?

we care only about outcome: when drawing game graph, prune isomorphic
siblings (leave one of each iso pair)

x

x x x L to x x R to x or 0

x

x x = -1

L no options R to 0

x = 1

x L to 0 R no options



CG game notation G = {GL | GR}

alternative to game graph

above domineering game in this notation?

game 0 is { | } game 1 is { 0 | } game −1 is { | 0 }

so game above G = { −1 | 1, 0 }

game sums

define G+H = { GL +H,G+HL | GR +H,G+HR }

eg. domineering sum G + H below?

G x H x x A x x B x

x x x x x x

G + H = { -1 + H, G + 1 | 1 + H, 0 + H, G + -1 }

= { H - 1, G + 1 | H + 1, H, G - 1 }



partisan, impartial

comb-game impartial if, for every position, the move options are the same
(yield the same new positions) for both players

comb-game partisan if not impartial

e.g. nim impartial, Hex partisan Go? cram?

FTCG

assume normal play

• P-psn: 2nd-player (prev) has win-strat

• N-psn: 1st-player (next) has win-strat

• L-psn: L has win-strat, regardless of who plays next

• R-psn: R has win-strat, regardless of who plays next

• e.g. nim(3,2,1) ? nim(3,3,3)? nim(3,3,4)?

• e.g. domineering(2×3)? e.g. domineering(3×2)?

• FTCG: every finite game is exactly one of P-position, N-position, L-
position, R-position

• proof? argue similar to Z’s theorem (or use Z’s theorem)



week 2. strategy as dag, Z’s thm, CG intro



strategy as dag

earlier we defined strategy as a function. we can define strategies using the
game tree, or directed acyclic graph if we want to save space and so

acknowledge that a fixed state can be reached in more than one way, of all
possible continuations of the game.

e.g. transpositions in tic-tac-toe, hex, any game where history is irrelevant

strategy for a player A (with opponent B) from state S0 = (P,X), a
strategy is a subdag T = T (P,A) of the game dag with root S0, such that

for each node S = (p,X) in T ,

• if X = A then the only child of S is f(S),

• if X = B then, for each legal move m by B from S, the state Sm

reached after move m is a child of S.

Notice: in T ,

• every node S = (p,A) either is terminal or has exactly one child;

• every node T = (q, B) has one child for each legal move that B can
make from q.

recall: winning strategy is strategy with minimax value win. defn drawing

strategy, losing strategy similarly. exercise: prove strategy is drawing iff
each leaf is a winning or drawing position and at least one leaf is not

winning



examples

for a state S and a player X, we say X wins S (resp. draws) whenever X
has a winning (resp. drawing) strategy for S, and X loses S whenever X
has no winning and no drawing strategy for S (i.e. for any X-strategy, at

least one leaf is X-losing; equivalently, the opponent has a winning
strategy).

is this 1st-player strategy for nim{1,2} winning?

no: there is a leaf where 1st-player loses

{1,2}

/

{2}

/ |

{} {1}

|

{}

is this 2nd-player strategy for nim{1,2} winning?

no: there is a leaf where 2nd-player loses

{1,2}

/ | \

{2} {1,1} {1}

/ | \

{} {1} {}

|

{}

for nim{2,3}, who wins? show winning strategy graph



Zermelo’s theorem for WLD games

mot’n: chess, who wins? Bouton 1901, Zermelo 1913

assume alternate-turn 2-player win-loss-draw game, e.g. chess. name the
two players: L (left), R (right)

recall: L wins means L has a winning strategy (minimax value win: wins
against all possible opponent strategies)

recall: L draws means L has a non-losing strategy (minimax value draw:
wins or draws against all possible opponent strategies)

Z’s theorem for any WLD AT 2p game G, exactly one of these: L wins,
R wins, or both players draw

proof by induction on the depth of T, game dag of G.

depth 0: root is terminal node, so value is L-win-R-lose or L-lose-R-win or
draw

depth n > 0, assume holds for shorter dags, root S = (P,X), assume
WLOG X = L, child subdags T1 . . . Tk

case 1. some Tj is L-win

case 2. every Tj is R-win

case 3. not (1 or 2), i.e. no Tj L-win and some Tj not R-win (so draw).

exercise: finish proof

corollary pruning T yields win-strat for L or win-strat for R or draw-strat
for both



CG motivation, go

recall: what we now call CG started in 70s when Conway, watching go
players, noticed that endgame often decomposed into independent

subgames

go rules

warning: there are different go rulesets. e.g. three largest pro go
associations: China, Korea, Japan each have different rulesets. we follow a
version of Tromp-Taylor rules, because they are well-defined and easy to

implement

http://tromp.github.io/go.html

• we allow any rectangular boardsize, e.g. 1×25, 3×4

• we usually do not allow suicide

• clearing corresponds to capturing

• unless stated otherwise, we follow TT’s positional superko. other vari-
ants include situational superko.

• TT rules are close to Chinese rules

• Japanese rules are more restrictive, e.g. you lose points if you play in
your captured territory

• when humans play, they agree on which stones are captured before
scoring: if they don’t agree, they keep playing. with TT rules, you
just score the final position.

learn some go

https://webdocs.cs.ualberta.ca/~hayward/355/jem/go.html

https://webdocs.cs.ualberta.ca/~hayward/355/jem/go.html#
learn



go

go can be played on any n×m board. we follow Tromp-Taylor no-suicide
positional superko rules. B (Black) versus W (White). A move is made by
placing a stone on an empty point (intersection of horizontal and vertical
line) and then removing each opponent group that is captured. a group is a
set of stones of the same color that is connected (you can go between any
two stones in the group following a path of adjacent stones in the group)
and maximal (not a proper subset of any larger connected stone set). the
liberties of a group are all empty points that touch some stone in that

group. to be legal, the group that contains the stone just played must have
at least one liberty.

A legal go position is an assignment of stones to some points so that, for
each player, each group (maximal connected set of stones of that color) has

at least one liberty (adjacent empty point).

E.g. legal 2x3 go positions:

.*. .*o .*o .*o **o .*o .*o .o.

... .*. o*. **. **. oo. **. o.o

E.g. illegal 2x3 go positions:

o*o .*o o*o o*o **o **o .*o .o.

.o. .*o o*. *.. **o oo. **o o*o



Procedure to determine whether a move is legal:

1. place stone on empty point

2. for each opponent group whose last liberty was just removed, remove
all the stones in that group (they have been captured)

3. does the player’s group containing the stone just placed have any lib-
erties? if no, return illegal move (no liberties)

4. has the new board position occurred previously in the game? if yes,
return illegal move (positional superko violation)

5. return legal move

examples?



cg motivation: go endgames

Figure 3.1, Mathematical go: Chilling Gets the Last Point, Berlekamp and
Wolfe. White to play. best move? final score?

1

2

3

4

5

6

7

8

9

a b c d e f g h i

one difference between chess and go? subgame decomposition

in cg, we want to answer this question: how do we decide which subgame
to play in?

notice that the overall game is alt-turn, but that we are interested in
(sub)game sums. so, when we consider a game, we think of it as a position

with player-to-move unknown



solving hex

• for all board sizes up to 9×9, win/loss values of all empty-board first-
moves is known

• for 10×10, win/loss values of 8 empty-board first-moves is known (4
losses using proof by contradiction, 4 wins by computer search)

• 11×11 ?

http://webdocs.cs.ualberta.ca/~hayward/talks/hex.someques.

pdf

https://webdocs.cs.ualberta.ca/~hayward/355/jem/hex.html

solving go

• 1×n go solved up to n = 9

• for 2 ≤ m ≤ n, m× n go solved up to m×n around 30

• our group has a 3×3 solver

• 6×6 ?

http://erikvanderwerf.tengen.nl/5x5/5x5solved.html

https://webdocs.cs.ualberta.ca/~hayward/355/jem/go-solve.
html



week 1: intro, nim



intro

motivation. nim. tree of all continuations. some definitions. how to define
strategy. tree of all continuations. nim sum. Bouton’s theorem. using

Bouton’s theorem.

combinatorial game

a combinatorial game is two-player, alternate-turn, perfect-information,
zero-sum, deterministic, finite. the two players are Left and Right. when

colors are black (e.g. go, hex, chess), white Left is bLack, righT is whiTe. a
CG is normal form if it is win-loss and the losing player is whoever cannot

make a move. e.g. nim is normal form. (see
https://en.wikipedia.org/wiki/Combinatorial_game_theory for

another definition of combinatorial game)

motivation

board-game math. nim, hex, go, chess: what math arises when we try to
solve these games (play perfectly) on small boards (large board search

space intractible).

Conway, Berlekamp, Guy. On numbers and games. Winning ways for your

mathematical plays. Albert, Nowakowski, Wolfe. Lessons in Play. Siegel
Combinatorial Game Theory. DeVos, Kent. Game Theory: A Playful Intro

recreational math. Gardner. research problems: 6x6 go, 10x10 hex.



nim

two players. a pile is a non-empty set of stones. a position is a (possibly
empty) set of piles of stones. on a turn, the player-to-move removes a

positive number of stones from some pile. whoever cannot make a move
loses and the other player wins.

we can represent a position as a (possibly empty) multiset of positive
integers. here is a game between A and B starting from {3,5,5} :

{3,5,5}

A {3,1,5}={1,3,5}

B {1,3}

A {1,1}

B {1}

A {}

B loses

https://en.wikipedia.org/wiki/Nim

https://webdocs.cs.ualberta.ca/~hayward/355/jem/nim.html



normal play end condition: whoever cannot move is loser

misère end condition: whoever cannot move is winner

N (next) is the player-to-move next. P (previous) is the player who
is not N, i.e. the player-who-moved previously, if there was a previous

move.

who wins nim {0,0}?

N has no legal moves, so loses, so P wins.

who wins nim {0,1} = {1,0}?

N: she can move to the P-position {0,0}

who wins nim {0,n} for any positive n? N

who wins nim {n,n} for any positive n? P

defn: tweedledee-tweedledum strategy a 2nd-player strategy for
player B in which B always mirrors A’s move. e.g. in 2-pile nim from
{n,n}, here is such a strategy for second player B: if A just removed t

stones from a pile, remove t stones from the other pile



how many moves from nim (1, 3, 3)? 1 + 3 + 3 = 7

how many pairwise non-isomorphic moves from nim (1, 3, 3)?

4: to any of {0,3,3}, {1,2,3}, {1,1,3}, {0,1,3}

how many moves from nim {1, 3, 3}? 4

who wins nim {1, 2, 3}? solve from bottom up

{0, 0, 0} P-position no legal moves

{0, 0, 1} N-position exists move to P-position {0,0,0}

{0, 0, 2} N exists move to P-position

{0, 1, 1} P only move is to N-position

{0, 0, 3} N exists move to P-position

{0, 1, 2} N exists move to P-position

{1, 1, 1} N exists move to P-position

{0, 1, 3} N exists move to P-position

{0, 2, 2} P each move is to N-position

{1, 1, 2} N exists move to P-position

{0, 2, 3} N exists move to P-position

{1, 1, 3} N exists move to P-position

{1, 2, 2} N exists move to P-position

{1, 2, 3} ?



nim-sum of multiset of non-neg. integers is xor-sum

e.g. 1
⊕

3
⊕

6
⊕

7 = 3

1 1

3 1 1

6 1 1 0

7 1 1 1

-----

nim-sum 0 1 1

multiset M = {6, 13, 13, 24, 30} has nim-sum 0:

6 1 1 0

13 1 1 0 1

13 1 1 0 1

24 1 1 0 0 0

30 1 1 1 1 0

-----

nim-sum 0 0 0 0 0

if we change (decrease, increase) one integer in M?

nim-sum will no longer be 0. do you see why?

6 1 1 0

10 1 0 1 0 <- changed

13 1 1 0 1

24 1 1 0 0 0

30 1 1 1 1 0

-----

nim-sum 0 0 1 1 1 <- no longer 0



Bouton’s theorem

nimsum of a multiset of positive integers is the columnwise mod-2 sum of
the binary representations. Bouton’s theorem: a nim position is winning

if and only if its nimsum is positive.

e.g. nimsum of {3,5,5} is 0b 011 which is 3 which is positive, so Bouton’s
theorem says that this is position is winning (for the player-to-move), i.e.

that the ptm has a winning strategy.

3 0 1 1

5 1 0 1

5 1 0 1

nimsum 0 1 1

We can use Bouton’s theorem to find all winning moves. nim{3,5,5} is
winning, so there must be a move that leaves a losing position, i.e. a

position with nimsum 0. here are all positions that ptm can move to from
nim{3,5,5}: 55 155 255 35 135 235 335 345. compute the nimsum of each.

which have nimsum 0?

using Bouton’s theorem to find all winning

moves

Here is a faster way to use Bouton’s theorem to find all winning moves
from a nim position:

• in the nimsum array, find the left-most column c whose mod-2 sum is
positive (if the nimsum is positive, why must such a column exist?)

• pick any row r with a one in column c. (why must such a row exist?)

• change the 1 at (row r, column c) to 0

• for each location Z = (r,c’) with c’ ¿ c, set Z to be the mod-2 sum of
all other elements of that column

• why does this process leave a position with nimsum 0?

• why does process correspond to a legal move in nim?

e.g. nim{3,5,5}, the only column with mod-2 sum 1 is the middle column,
so c is 2 (middle column). the only row with a 1 in that column is column
1 (top), we we set that location to 0. now we set location (row 1, column
3) to the mod-2 sum of the rest of that column which is +=0*. So the only
winning move from {3,5,5} is to {5,5}, i.e. from the pile with 3 stones,

remove 3 stones.



3 1 1 --> 0 0 0

5 1 0 1 1 0 1 5

5 1 0 1 1 0 1 5

nimsum 0 1 0 0 0 0

another example: from {3,5,7}, three winning moves

3 1 1 1 1 3 1 1 3 --> 1 0 2

5 1 0 1 1 0 1 5 --> 1 0 0 4 1 0 1 5

7 1 1 1 --> 1 1 0 6 1 1 1 7 1 1 1 7

0 0 1 0 0 0 0 0 0 0 0 0



nim-sum theorem (Bouton’s theorem) nim state winning iff its nim-sum
is positive

• Let M be a multiset of non-negative integers including a positive inte-
ger m. Let M ′ be the multiset obtained from M by replacing m (just
one instance) with an integer 0 ≤ m′ < m. If nim-sum(M) = 0, then
nim-sum(M ′) 6= 0.

• Let M be a multiset of non-negative integers such that nim-sum(M) 6=
0. Then some m in M can be replaced with a smaller integer m′ so
that nim-sum(M ′) = 0.

How to find m and m′? Let j be the position of the leftmost 1 in
binary(nim-sum(M)). Let m be any integer in M whose position-j
digit in binary(m) is also 1. Let M −m be the multiset obtained by
removing (one instance of m) from M . Let q = nim-sum(M −m). Let
M ′ be the multiset obtained from M by replacing (one instance of) m
with q. Then nim-sum(M ′) = 0.



example of second part of theorem.

6 1 1 0

10 1 0 1 0

13 1 1 0 1 <- change

24 1 1 0 0 0

30 1 1 1 1 0

-----

nim-sum 0 0 1 1 1

j

j is position 3 (counting from right), so m can be 6, 13, or 30. Pick
m = 13. Then M −m = {6, 10, 24, 30}, nim-sum(M −m) = 01010_b = 10,

M ′ = {6, 10, 10, 24, 30}.

6 1 1 0

10 1 0 1 0

10 1 0 1 0

24 1 1 0 0 0

30 1 1 1 1 0

-----

nim-sum 0 0 0 0 0



nim: Bouton’s corollary

recall Bouton’s theorem:

nimsum-0, all moves to nimsum-pos

nimsum-pos, some move to nimsum-0

corollary nim position winning iff nimsum-pos

proof induction on pile-sum.



tree of all continuations, a.k.a. game tree

when analyzing a game, it can help to consider the tree T of all possible

continuations., also called the game tree. The root is the initial position.
For each node v in the tree, the children of v are all states that the

player-to-move can move to from v. e.g. here is the game tree for nim{1,2}:

(1,2)

/ | \

(2) (1,1) (1)

/ | | \

() (1) (1) ()

| |

() ()



tic

like tic-tac-toe, except 1x3 board instead of 3x3, win by getting
2-touching-in-a-row.

assume x plays first: here is part of the game tree (add edges yourself)

. . .

/ | \

x . . . x . . . x <- has iso. sibl.

/ \ / \ so prune this

x o . x . o o x . . x o node

| | | |

x o x x x o o x x x x o

draw x-win x-win x-win



strategy

state S = (X,A) is position X and player-to-move A.

for S = (X,A), strategy is a function f(s) that, for each state T = (X ′, A)
reachable by a sequence of legal moves from X, gives the move that A

makes at X ′.

a player’s strategy is winning if it wins against all possible opponent
strategies.

a player’s strategy is minimax if it maximizes the minimum score it
achieves over the set of all possible opponent strategies.

e.g. consider a particular state S = (X,A) with B the opponent of A for
which B has possible strategies T1, T2, T3 and A has possible strategies

S1, S2. Assume that, against B’s three strategies, S1 scores result win, win,
loss respectively and S2 scores result draw, win, draw. Then A’s minimax
strategy is S2, because the min of {win,win,loss} is loss, and the min of

{draw,win,draw} is draw, and draw is better for A than loss.



e.g. here is a nim strategy: always remove all stones from a largest pile.
notice that this is a winning strategy for nim with 1 pile. can you find a
nim position with 2 piles for which this is a winning strategy? losing? can
you find a nim position with 3 piles for which this is a winning strategy?

losing?

for nim with at most two piles, can you find a winning strategy?

hint: tweedle

for nim{3,5,7}, find a minimax strategy for the first player.

hint: Bouton



http://webdocs.cs.ualberta.ca/~hayward/cgt/asn/21/wk10.pdf


