lecture 3

alternating linear clobber

	outcome cl	ass	comment
game A2	ox	Ν	ox = { 0 0 } called *
game A4	oxox	Ν	= { up, 0, * down, 0, *}
game A6	οχοχοχ	Р	
game A8	oxoxoxox	?	

outcome class for A6 ? show Left options at root

A6

XXOXO	OXO_XX	oxx_ox	o_xxox	x_oxox
good move	for Right?			
xo_xo	_00_XX	_ox_ox	o_xx_o	o_xx_o

so A6 is a P-position

alternating linear clobber conjecture:

A2t (for all positive 2t, except 2t = 6) is a N-position with your neighbour: try to prove that A8 is an N-position motivation: how can we reduce our work

in trying to prove that A8 is an N-position?

first moves from A8 xoxoxoxo

say x plays first, can move to

xoxoxo, xo xxoxo, xoxo xxo, xoxoxo x, xx oxoxo, xoxx oxo, xoxoxx o definition of games equal to 0 (in cgt)

we say a game equals 0 if and only if it is a P-position why ?

suppose we have a comb. game g and it decomposes into 2 independent parts, x and y, and x is a P-psn we write g = x + ynow assume y is an N position. what can we say about g? answer: g is an N-position. proof?

proof: assume L plays first.

make a winning move on y.

if the opponent replies on y, continue with a winning move on y. whenever the opponent replies on x, play a 2nd-player wins strategy on x. this must leave (on x) either 0 or a P-psn (why). so argue by induction. recall: in game notation, 0 is the game { | } now we can simplify: ignore P-positions outcome class for A6 ? show Left options at root A6 XXOXO OXO_XX OXX_OX O_XXOX X_OXOX simpler: xxoxo oxo oxx + ox XXOX OXOX blah blah \dots A4 + up + oxoxo + A6 + * A4 + up + oxoxo + * =

• Devos/Kent chap 1

https://webdocs.cs.ualberta.ca/~hayward/cgt/asn/devoschap1.pdf

• rules of go

https://webdocs.cs.ualberta.ca/~hayward/355/rules.pdf

lecture 4

• rules of hex

https://webdocs.cs.ualberta.ca/~hayward/355/hexgame.pdf

\mathbf{hex}

- no draw
- extra stones
- 1pw
- 2pw (irregular)
- virtual connections, mustplay

hex talk

https://webdocs.cs.ualberta.ca/~hayward/talks/twist2.pdf

hex page on CMPUT 355

https://webdocs.cs.ualberta.ca/~hayward/355/jem/hex.html

hex-the-full-story via ualberta ccid

https://www.taylorfrancis.com/books/hex-inside-ryan-hayward-bjarne-toft/10.1201/9780429031960

chomp

Fred Schuh 1952, David Gale 1974, Martin Gardner 1973

https://en.wikipedia.org/wiki/Chomp

https://www.win.tue.nl/~aeb/games/chomp.html

boxoff

https://www.abstractgames.org/boxoff.html

two players. a *pile* is a non-empty set of stones. a *position* is a (possibly empty) set of piles of stones. on a turn, the player-to-move removes a positive number of stones from some pile. whoever cannot make a move loses and the other player wins.

we can represent a position as a (possibly empty) multiset of positive integers. here is a game between A and B starting from $\{3,5,5\}$:

- {3,5,5}
 A {3,1,5}={1,3,5}
 B {1,3}
 A {1,1}
 B {1}
 A {}
- B loses

https://webdocs.cs.ualberta.ca/~hayward/355/jem/nim.html

normal play end condition: whoever cannot move is loser *misère* end condition: whoever cannot move is winner N (next) is the player-to-move next. P (previous) is the player who is not N, i.e. the player-who-moved previously, if there was a previous move.

who wins nim $\{0,0\}$?

N has no legal moves, so loses, so P wins.

who wins nim $\{0,1\} = \{1,0\}$? N: she can move to the P-position $\{0,0\}$

who wins nim $\{0,n\}$ for any positive n?Nwho wins nim $\{n,n\}$ for any positive n?P

defn: tweedledee-tweedledum strategy a 2nd-player strategy for player B in which B always mirrors A's move. e.g. in 2-pile nim from $\{n,n\}$, here is such a strategy for second player B: if A just removed t stones from a pile, remove t stones from the other pile how many moves from nim (1, 3, 3)?1+3+3=7how many pairwise non-isomorphic moves from nim (1, 3, 3)?4: to any of $\{0,3,3\}, \{1,2,3\}, \{1,1,3\}, \{0,1,3\}$ how many moves from nim $\{1, 3, 3\}$?

who wins nim $\{1, 2, 3\}$? solve from bottom up

$\{0,0,0\}$	P-position	no legal moves
$\{0,0,1\}$	N-position	exists move to P-position $\{0,0,0\}$
$\{0,0,2\}$	Ν	exists move to P-position
$\{0,1,1\}$	Р	only move is to N-position
$\{0,0,3\}$	\mathbf{N}	exists move to P-position
$\{0,1,2\}$	Ν	exists move to P-position
$\{1,1,1\}$	\mathbf{N}	exists move to P-position
$\{0,1,3\}$	Ν	exists move to P-position

 each move is to N-position exists move to P-position exists move to P-position exists move to P-position exists move to P-position

 $\{1, 2, 3\}$?

nim-sum of multiset of non-neg. integers is xor-sum

e.g. $1 \oplus 3 \oplus 6 \oplus 7 = 3$

1		1
3		1 1
6		1 1 0
7		1 1 1
	nim-sum	0 1 1

multiset $M = \{6, 13, 13, 24, 30\}$ has nim-sum 0:

6				1	1	0	
13			1	1	0	1	
13			1	1	0	1	
24		1	1	0	0	0	
30		1	1	1	1	0	
	nim-sum	0	0	0	0	0	

if we change (decrease, increase) one integer in M?

nim-sum will no longer be 0. do you see why?

nimsum of a multiset of positive integers is the columnwise mod-2 sum of the binary representations. Bouton's theorem: a nim position is winning if and only if its nimsum is positive.

e.g. nimsum of {3,5,5} is 0b 011 which is 3 which is positive, so Bouton's theorem says that this is position is winning (for the player-to-move), i.e. that the ptm has a winning strategy.

3	0	1	1	
5	1	0	1	
5	1	0	1	
nimsum	0	1	1	

We can use Bouton's theorem to find all winning moves. nim $\{3,5,5\}$ is winning, so there must be a move that leaves a losing position, i.e. a position with nimsum 0. here are all positions that ptm can move to from nim $\{3,5,5\}$: 55 155 255 35 135 235 335 345. compute the nimsum of each. which have nimsum 0? using Bouton's theorem to find all winning moves

Here is a faster way to use Bouton's theorem to find all winning moves from a nim position:

- in the nimsum array, find the left-most column c whose mod-2 sum is positive (if the nimsum is positive, why must such a column exist?)
- pick any row r with a one in column c. (why must such a row exist?)
- change the 1 at (row r, column c) to 0
- for each location Z = (r,c') with c' ; c, set Z to be the mod-2 sum of all other elements of that column
- why does this process leave a position with nimsum 0?
- why does process correspond to a legal move in nim?

e.g. $\min\{3,5,5\}$, the only column with mod-2 sum 1 is the middle column, so c is 2 (middle column). the only row with a 1 in that

column is column 1 (top), we we set that location to 0. now we set location (row 1, column 3) to the mod-2 sum of the rest of that column which is $+=0^*$. So the only winning move from $\{3,5,5\}$ is to $\{5,5\}$, i.e. from the pile with 3 stones, remove 3 stones.

3		1	1	>	0	0	(С
5	1	0	1	1	0	1	ļ	ว
5	1	0	1	1	0	1	ļ	วิ
nimsum	0	1	0	0	0	0		

another example: from $\{3,5,7\}$, three winning moves

3	-	1	1			1	1	3		1	1	3	>	1	0	2
5	1 ()	1		1	0	1	5	> 1	0	0	4	1	0	1	5
7	1 1	1	1	>	1	1	0	6	1	1	1	7	1	1	1	7
	0 ()	1		0	0	0		0	0	0		0	0	0	

nim-sum theorem (Bouton's theorem) nim state winning iff its nim-sum is positive

- Let M be a multiset of non-negative integers including a positive integer m. Let M' be the multiset obtained from M by replacing m (just one instance) with an integer $0 \le m' < m$. If $\operatorname{nim-sum}(M) = 0$, then $\operatorname{nim-sum}(M') \neq 0$.
- Let M be a multiset of non-negative integers such that nimsum $(M) \neq 0$. Then some m in M can be replaced with a smaller integer m' so that nim-sum(M') = 0.

How to find m and m'? Let j be the position of the leftmost 1 in binary(nim-sum(M)). Let m be any integer in M whose position-j digit in binary(m) is also 1. Let M - m be the multiset obtained by removing (one instance of m) from M. Let q = nim-sum(M - m). Let M' be the multiset obtained from M by replacing (one instance of) m with q. Then nim-sum(M') = 0.

example of second part of theorem.

j is position 3 (counting from right), so *m* can be 6, 13, or 30. Pick m = 13. Then $M - m = \{6, 10, 24, 30\}$, nim-sum(M - m) = 01010 b = 10, $M' = \{6, 10, 10, 24, 30\}$.

		1	1	0
	1	0	1	0
	1	0	1	0
1	1	0	0	0
1	1	1	1	0
	1 1	1 1 1 1 1	1 1 0 1 0 1 1 0 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

nim-sum 0 0 0 0 0

nim: Bouton's corollary

recall Bouton's theorem: nimsum-0, all moves to nimsum-pos nimsum-pos, some move to nimsum-0 corollary nim position winning iff nimsum-pos proof induction on pile-sum.