lecture 3

alternating linear clobber

	outcome class		comment
game A2	OX	N	$o x=\{0 \mid 0\}$ called $*$
game A4	OXOX	N	$=\{\operatorname{up}, 0, * \mid$ down $0, *\}$
game A6	OXOXOX	P	
game A8	oxoxoxox	$?$	

outcome class for A6 ? show Left options at root A6
xxoxo
oxo_xx
oxx_ox
o_xxox
x_oxox
good move for Right?

$$
\begin{aligned}
& \text { XO_XO _OO_XX _OX_OX } \\
& \text { O_XX_O } \\
& \text { O_XX_O }
\end{aligned}
$$

so A6 is a P-position
alternating linear clobber conjecture:

A2t (for all positive 2t, except $2 \mathrm{t}=6$) is a N-position with your neighbour: try to prove that A8 is an N-position motivation: how can we reduce our work
in trying to prove that A8 is an N-position?
first moves from A8 xoxoxoxo
say x plays first, can move to
xoxoxo, xo xxoxo, xoxo xxo, xoxoxo $x, ~ x x ~ o x o x o, ~ x o x x ~ o x o, ~ x o x o x x ~ o ~$
definition of games equal to 0 (in cgt)
we say a game equals 0 if and only if it is a P-position why ?
suppose we have a comb. game g and it decomposes
into 2 independent parts, x and y , and x is a $\mathrm{P}-\mathrm{psn}$ we write $\quad g=x+y$
now assume y is an N position.
what can we say about g ?
answer: g is an N-position.
proof?
proof: assume L plays first.
make a winning move on y .
if the opponent replies on y, continue with a winning move on y. whenever the opponent replies on x, play a 2nd-player wins
strategy on x. this must leave (on x) either 0 or a P-psn (why).
so argue by induction.
recall: in game notation, 0 is the game \{ | \}
now we can simplify: ignore P-positions
outcome class for A6 ? show Left options at root

$$
\begin{array}{rcccc}
\text { xxoxo oxo_xx oxx_ox A6 } & \text { o_xxox } & \text { x_oxox } \\
\text { simpler: xxoxo } & \text { oxo oxx + ox xxox oxox } \\
\text { blah blah blah } & \ldots & \text { A4 + up + oxoxo + A6 + * } \\
& =\quad \mathrm{A} 4+\mathrm{up}+\mathrm{oxoxo}+*
\end{array}
$$

- Devos/Kent chap 1
https://webdocs.cs.ualberta.ca/~hayward/cgt/asn/devoschap1.pdf
- rules of go
https://webdocs.cs.ualberta.ca/~hayward/355/rules.pdf

lecture 4

- rules of hex
https://webdocs.cs.ualberta.ca/~hayward/355/hexgame.pdf
- no draw
- extra stones
- 1pw
- 2pw (irregular)
- virtual connections, mustplay
hex talk
https://webdocs.cs.ualberta.ca/~hayward/talks/twist2.pdf
hex page on CMPUT 355
https://webdocs.cs.ualberta.ca/~hayward/355/jem/hex.html hex-the-full-story via ualberta ccid
https://www.taylorfrancis.com/books/hex-inside-ryan-hayward-bjarne-toft/10.1201/9780429031960

chomp

Fred Schuh 1952, David Gale 1974, Martin Gardner 1973

https://en.wikipedia.org/wiki/Chomp
https://www.win.tue.nl/~aeb/games/chomp.html

boxoff

https://www.abstractgames.org/boxoff.html
two players. a pile is a non-empty set of stones. a position is a (possibly empty) set of piles of stones. on a turn, the
player-to-move removes a positive number of stones from some pile. whoever cannot make a move loses and the other player wins.
we can represent a position as a (possibly empty) multiset of positive integers. here is a game between A and B starting from $\{3,5,5\}$:

```
    {3,5,5}
A {3,1,5}={1,3,5}
B {1,3}
A {1, 1}
B {1}
A {}
B loses
```

 https://en.wikipedia.org/wiki/Nim
 https://webdocs.cs.ualberta.ca/~hayward/355/jem/nim.html
normal play end condition: whoever cannot move is loser misère end condition: whoever cannot move is winner
N (next) is the player-to-move next. P (previous) is the player who is not N, i.e. the player-who-moved previously, if there was a previous move.
who wins nim $\{0,0\}$?
N has no legal moves, so loses, so P wins.
who wins $\operatorname{nim}\{0,1\}=\{1,0\}$?
N : she can move to the P -position $\{0,0\}$
who wins $\operatorname{nim}\{0, n\}$ for any positive n ?
who wins nim $\{n, n\}$ for any positive n ?
defn: tweedledee-tweedledum strategy a 2nd-player strategy for player B in which B always mirrors A's move. e.g. in 2-pile nim from $\{n, n\}$, here is such a strategy for second player B: if A just removed t stones from a pile, remove t stones from the other pile
how many moves from nim $(1,3,3)$?
how many pairwise non-isomorphic moves from nim $(1,3,3)$? 4: to any of $\{0,3,3\},\{1,2,3\},\{1,1,3\},\{0,1,3\}$
how many moves from $\operatorname{nim}\{1,3,3\}$?
who wins $\operatorname{nim}\{1,2,3\}$?
solve from bottom up
$\{0,0,0\} \quad \mathrm{P}$-position
$\{0,0,1\} \quad \mathrm{N}$-position
$\{0,0,2\} \quad \mathrm{N}$
$\{0,1,1\} \quad \mathrm{P}$
$\{0,0,3\} \quad \mathrm{N}$
$\{0,1,2\} \quad \mathrm{N}$
$\{1,1,1\} \quad \mathrm{N}$
$\{0,1,3\} \quad \mathrm{N}$
no legal moves
exists move to P-position $\{0,0,0\}$ exists move to P-position only move is to N -position exists move to P-position exists move to P-position exists move to P-position exists move to P-position
$\{0,2,2\} \quad P$
$\{1,1,2\} \quad \mathrm{N}$
$\{0,2,3\} \quad \mathrm{N}$
$\{1,1,3\} \quad \mathrm{N}$
$\{1,2,2\} \quad \mathrm{N}$
each move is to N -position exists move to P-position exists move to P-position exists move to P-position exists move to P-position

$$
\{1,2,3\} \quad ?
$$

nim-sum of multiset of non-neg. integers is xor-sum

$$
\text { e.g. } 1 \oplus 3 \oplus 6 \oplus 7=3
$$

multiset $M=\{6,13,13,24,30\}$ has nim-sum 0:
$\left.\begin{array}{rllllll}6 & & & & 1 & 1 & 0 \\ 13 & & & & 1 & 1 & 0\end{array}\right)$
if we change (decrease, increase) one integer in M ?
nim-sum will no longer be 0 . do you see why?

nimsum of a multiset of positive integers is the columnwise mod-2 sum of the binary representations. Bouton's theorem: a nim position is winning if and only if its nimsum is positive.
e.g. nimsum of $\{3,5,5\}$ is 0 b 011 which is 3 which is positive, so

Bouton's theorem says that this is position is winning (for the player-to-move), i.e. that the ptm has a winning strategy.

3	0	1	1
5	1	0	1
5	1	0	1
nimsum	0	1	1

We can use Bouton's theorem to find all winning moves. $\operatorname{nim}\{3,5,5\}$ is winning, so there must be a move that leaves a losing position, i.e. a position with nimsum 0 . here are all positions that ptm can move to from $\operatorname{nim}\{3,5,5\}: 5515525535135235335345$. compute the nimsum of each. which have nimsum 0 ?

Here is a faster way to use Bouton's theorem to find all winning moves from a nim position:

- in the nimsum array, find the left-most column c whose mod2 sum is positive (if the nimsum is positive, why must such a column exist?)
- pick any row r with a one in column c . (why must such a row exist?)
- change the 1 at (row r, column c) to 0
- for each location $Z=\left(r, c^{\prime}\right)$ with $c^{\prime} \dot{i} c$, set Z to be the mod-2 sum of all other elements of that column
- why does this process leave a position with nimsum 0 ?
- why does process correspond to a legal move in nim?
e.g. $\operatorname{nim}\{3,5,5\}$, the only column with $\bmod -2$ sum 1 is the middle column, so c is 2 (middle column). the only row with a 1 in that
column is column 1 (top), we we set that location to 0 . now we set location (row 1, column 3) to the mod-2 sum of the rest of that column which is $+=0^{*}$. So the only winning move from $\{3,5,5\}$ is to $\{5,5\}$, i.e. from the pile with 3 stones, remove 3 stones.

3		1	1		$->$		0	0
5	1	0	1		1	0	1	0
5	1	0	1		1	0	1	5
nimsum	0	1	0		0	0	0	

another example: from $\{3,5,7\}$, three winning moves

nim-sum theorem (Bouton's theorem) nim state winning iff its nim-sum is positive

- Let M be a multiset of non-negative integers including a positive integer m. Let M^{\prime} be the multiset obtained from M by replacing m (just one instance) with an integer $0 \leq m^{\prime}<m$. If $\operatorname{nim}-\operatorname{sum}(M)=0$, then $\operatorname{nim}-\operatorname{sum}\left(M^{\prime}\right) \neq 0$.
- Let M be a multiset of non-negative integers such that nim$\operatorname{sum}(M) \neq 0$. Then some m in M can be replaced with a smaller integer m^{\prime} so that $\operatorname{nim}-\operatorname{sum}\left(M^{\prime}\right)=0$.
How to find m and m^{\prime} ? Let j be the position of the leftmost 1 in binary (nim-sum $(M))$. Let m be any integer in M whose position- j digit in $\operatorname{binary}(m)$ is also 1 . Let $M-m$ be the multiset obtained by removing (one instance of m) from M. Let $q=$ $\operatorname{nim}-\operatorname{sum}(M-m)$. Let M^{\prime} be the multiset obtained from M by replacing (one instance of) m with q. Then nim-sum $\left(M^{\prime}\right)=0$.
example of second part of theorem.

j is position 3 (counting from right), so m can be 6,13 , or 30. Pick $m=13$. Then $M-m=\{6,10,24,30\}$, $\operatorname{nim}-\operatorname{sum}(M-m)=01010 _\mathrm{b}=10$, $M^{\prime}=\{6,10,10,24,30\}$.
6
10
10
24
30

			1	1
		0		
	1	0	1	0
	1	0	1	0
1	1	0	0	0
1	1	1	1	0

nim-sum 00000

nim: Bouton's corollary
recall Bouton's theorem:
nimsum-0, all moves to nimsum-pos
nimsum-pos, some move to nimsum-0 corollary nim position winning iff nimsum-pos proof induction on pile-sum.

