CGT class notes 2024

this is a brief lecture summary

I suggest that you also take your own notes

lecture 1

- syllabus
- linear clobber
- who wins xoxoxoxoxoxo ?
- cgt, egt
clobber

L player Left (also bLack, x)
R player Right (also whiTe, o)

N-psn (first player win)
P-psn (first player loss)
L-psn (L wins as 1st and 2nd player)
$R-p s n$ (R wins as 1st and 2nd player)
e.g. clobber
ox in N
oxox ?
assume w.l.o.g. L plays first
tree of all possible continuations of the game ?
say x plays first

lecture 2

Zermelo's theorem

G: 2-player alt-turn finite (so no loops) win/loss/draw game one of these holds:

- ptm wins (means: exists winning strategy for (ptm, G))
- optm wins
- ptm draws and optm draws
- exists at-least-draw strat for (ptm,G), and
- exists at-least-draw strat for (optm,G)
a simple game:

$$
2 \text { p alt-turn }
$$

B wins with vertical column

W wins with horizontal row
next page: game dag (directed acyclic graph)

sketch of proof of Z's theorem
now that we have seen examples on the diagram, here is an outline of how to proof Z's thm...

* inductively apply Z's thm for each subgame whose game dag has its root as a child of the original dag's root
* this gives us a value of $-1,0$, or 1
for each child of the root

sketch of proof of Z's theorem (continued)

how do we prove Z's thm at the root?

> case $1:$ min values of children $=-1$ then value of root is $1:$)
case 2: min values of children $=0$
then value of root is 0 root-ptm's drawing strategy?

- play to such a child root-optm's drawing strategy ?
- exercise

$$
\text { case } 3 \text { : } \text { min values of children }=1
$$

then value of root is -1
root-optm's winning strategy?
easy: for each root-ptm move, we end up at a child with value 1 and it's root-optm's move

mwah haaaahhhhhaaaaaa

> back to linear clobber who wins ox12 ? (oxoxoxoxoxox) game $x\{\mid\}$ call this game 0 game ox $\{0 \mid 0\}$ call this game $*$ game oxx $\{0 \mid *\}$ call this game up game oox $\{* \mid 0\}$ call this game down game oxox $\{0, *$, up $\mid 0, *$, down $\}$

