$(2+3)+(2+3)+(3+2)$ marks
Recall: ptm is player-to-move, optm is opponent of ptm. A state (X, P) is a game position X together with ptm P. Recall Zermelo's theorem: for any finite-move alternate-turn 2-player game in which each terminal state (T, P) is ptm-win and optm-lose, ptm-lose and optm-win, or ptm-draw and optm-draw, ptm has a winning strategy (in which case we call (T, P) a W -game), or optm has a winning strategy (an L-game), or each player has a strategy that wins or draws against any opponent strategy (a D-game).

Consider a W/L/D game with players P and Q and a state (S, P) from which P has five possible moves, yielding states $\left(Y_{1}, Q\right), \ldots,\left(Y_{5}, Q\right)$. Assume that Z's theorem holds for these five states. Also assume each $\left(Y_{j}, Q\right)$ except for $j=2$ is an L-game and that $\left(Y_{2}, Q\right)$ is a D-game.

1. [5 marks] Prove/disprove: Z's theorem holds for (S, P).
$(2+3)+(2+3)+(3+2)$ marks
2. [3 marks] For the 5 -pile nim position below (binary numbers), find all winning moves. Show your work.
```
pile 1 1 1 0 1 0 1 1 0 1
pile 2 1 1 1 1 0 1 1
pile 3 101 1 0 1
pile 4 1 0 0 0 1 0 1 0
pile 5 1 1 0 0 1 0 0
```

3. [2 marks] Prove that for $n \times n$ Hex there exists a winning strategy for the first player.
first name
$(2+3)+(2+3)+(3+2)$ marks
4. [5 marks] Complete this drawing of a 2×2 go second-player (white) strategy that shows that white can (win or draw or) lose by at most 1. (Symmetric children of the root have been pruned.)

