first name	last name	•	$\mathrm{id}\#$			
(2+3) + (2+3) + (3+2) marks	50 min	closed book	no devices	3 pages	page 1	
Recall: ptm is player-to-move, optm is opponent of ptm. A state (X, P) is a game position X together with						
ptm P . Recall Zermelo's theorem: for any finite-move alternate-turn 2-player game in which each terminal						
state (T, P) is ptm-win and optm-	lose, ptm-lose	e and optm-win,	or ptm-draw and	optm-draw,	ptm has a	

winning strategy (in which case we call (T, P) a W-game), or optm has a winning strategy (an L-game), or each player has a strategy that wins or draws against any opponent strategy (a D-game).

Consider a W/L/D game with players P and Q and a state (S, P) from which P has five possible moves, yielding states $(Y_1, Q), \ldots, (Y_5, Q)$. Assume that Z's theorem holds for these five states. Also assume each (Y_j, Q) except for j = 2 is an L-game and that (Y_2, Q) is a D-game.

1. [5 marks] Prove/disprove: Z's theorem holds for (S, P).

first name	last name		$\mathrm{id}\#$			
(2+3) + (2+3) + (3+2) marks	50 min	closed book	no devices	3 pages	page 2	
2. [3 marks] For the 5-pile nim	position below	(binary numbers)	, find all winning	moves. Show	your work.	

 pile 1
 1
 0
 1
 0
 1
 0
 1

 pile 2
 1
 1
 1
 1
 0
 1
 1

 pile 3
 1
 0
 1
 1
 0
 1
 1
 0
 1

 pile 3
 1
 0
 0
 1
 1
 0
 1
 0
 1

 pile 4
 1
 0
 0
 0
 1
 0
 1
 0

 pile 5
 1
 1
 0
 0
 1
 0
 0
 0

3. [2 marks] Prove that for $n \times n$ Hex there exists a winning strategy for the first player.

first name	last name		$\mathrm{id}\#$		
(2+3) + (2+3) + (3+2) marks	50 min	closed book	no devices	3 pages	page 3

4. [5 marks] Complete this drawing of a 2x2 go second-player (white) strategy that shows that white can (win or draw or) lose by at most 1. (Symmetric children of the root have been pruned.)

