cmput 497/670 2024 homework 4

Explain all answers carefully.

- Find the canonical form of the 4-pile nim game nim(15, 27, 14, 9). Hint: 1 1 1 1, 1 1 0 1 1, 1 1 1 0, 1 0 0 1 1. Which theorems if any are you using in your answer?
- 2. Prove directly (without using any theorems) that the impartial game g with move options $\{*0, *1, *2, *4, *7\}$ equals the game *3.
- 3. Prove that a game k with move options $\{*k_1, *k_2, *k_3\}$ is equal to $*\max(k_1, k_2, k_3)$. This question is a special case of what theorem?
- 4. Prove by induction that the m×n chop position equals *(m-1) + *(n-1).
- 5. a) Give the canonical form of the game g = chop(3×4) + bricks(5) + nim(5).
 b) If you play first on g, what move do you make?
- 6. When we think of hex as a combinatorial game, no moves are allowed after a player joins their two sides, and players do not necessarily alternate turns. In canonical form, give every combinatorial game equivalent to a hex position of a board with at most 3 rows and at most 3 columns. E.g. 0 is the canonical form of any position where a player has joined their two sides.
 - a) 1×1 board: games 0 and *: why?
 - b) 1×2 board: games $0, *, \uparrow, \downarrow$: why? see below
 - c) 2×2 board: all the above games (why?) as well as ???
 - d) 2×2 board: ???
 - e) 3×3 board: ???

a game (in can'l form) hex position