Explain all answers carefully.

1. Find the canonical form of the 4-pile nim game nim(15, 27, 14, 9).

Hint: $1111,11011,1110,10011$.
Which theorems if any are you using in your answer?
2. Prove directly (without using any theorems) that the impartial game g with move options $\{* 0, * 1, * 2, * 4, * 7\}$ equals the game $* 3$.
3. Prove that a game k with move options $\left\{* k_{1}, * k_{2}, * k_{3}\right\}$ is equal to $* \operatorname{mex}\left(k_{1}, k_{2}, k_{3}\right)$. This question is a special case of what theorem?
4. Prove by induction that the $\mathrm{m} \times \mathrm{n}$ chop position equals $*(m-1)+*(n-1)$.
5. a) Give the canonical form of the game $g=\operatorname{chop}(3 \times 4)+\operatorname{bricks}(5)+\operatorname{nim}(5)$.
b) If you play first on g, what move do you make?
6. When we think of hex as a combinatorial game, no moves are allowed after a player joins their two sides, and players do not necessarily alternate turns. In canonical form, give every combinatorial game equivalent to a hex position of a board with at most 3 rows and at most 3 columns. E.g. 0 is the canonical form of any position where a player has joined their two sides.
a) 1×1 board: games 0 and $*$: why?
b) 1×2 board: games $0, *, \uparrow, \downarrow$: why? see below
c) 2×2 board: all the above games (why?) as well as ???
d) 2×2 board: ???
e) 3×3 board: ???
a game (in can'l form) hex position

- 0

