1

Group members: Owen Randall and Mahya Jamshidian. I understand that any discussion of this assignment outside my group members is plagiarism. I have not used any resources outside the class notes and textbook.

2

a) \(*2 = \{*0, *1\}, *3 = \{*0, *1, *2\} \)

b) Using the minimum exclusion principle (MEX), we can see the minimum nimber not in the set \{*0, *1, *2, *5, *11\} is \(*3\). Therefore: \{*0, *1, *2, *5, *11\} = \(*3\).

c) Representing this game in canonical form and using MEX to simplify: \{*0, *1, *2\} = \{*0, *1, *0\} = \{*0, *1\} = \(*2\)

3

\begin{align*}
a) *3 & \rightarrow 011 \\
\oplus & \oplus \\
*4 & \rightarrow 100 \\
\oplus & \oplus \\
*5 & \rightarrow 101 \\
\oplus & \oplus \\
010 & \rightarrow *2 \\
\end{align*}

\begin{align*}
b) *7 & \rightarrow 0111 \\
\oplus & \oplus \\
*9 & \rightarrow 1001 \\
\oplus & \oplus \\
*14 & \rightarrow 1110 \\
\oplus & \oplus \\
*6 & \rightarrow 0110 \\
\end{align*}

\begin{align*}
c) *19 & \rightarrow 010011 \\
\oplus & \oplus \\
*28 & \rightarrow 101100 \\
\oplus & \oplus \\
*33 & \rightarrow 100001 \\
\end{align*}

\begin{align*}
0110 & \rightarrow *6 \\
001011 & \rightarrow *11
\end{align*}

a) Take 2 stones from the first heap
b) Take 6 stones from the first heap (there are several correct moves here)
b) Take 5 stones from the third heap
a) * 1 → 001
* 4 → 100
* 5 → 101

b) * 1 → 0001
* 9 → 1001
* 14 → 1110

* 37 → 100101
* 23 → 010111

* 000 → * 0
* 0000 → * 0

4

a)

\[2 \times 3 \text{ Chomp} + 2 \times 4 \text{ Chop} + * 5\]
\[= * 4 + (* 1 + * 3) + * 5 = * 3\]

If we look at the nimber sum as in figure 1, we can see that for example a winning move could be to change Chop 2 \times 4 to 2 \times 1 with nimber * 1.

\[
\begin{array}{c|c|c}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array}
\]

Figure 1: Question 4, Part a, nimber sum.

b)

\[\text{Pick Up}(4) + 5 \times 3 \text{ Chop} + * 7\]
\[= * 1 + (* 4 + * 2) + * 5\]
\[= * 0\]

Based on the theorem, this position is * 0, so it is a losing position. Thus, there is no winning move.

c)

\[\text{Pick Up}(11) + 18 \times 24 \text{ Chop} + * 20\]
\[= * 2 + (* 17 + * 23) + * 20\]
\[= * 2 + (* 1 + * 16) + (* 1 + * 2 + * 4 + * 16) + * 4 + * 16\]
\[= * 16\]

If we look at the nimber sum as in figure 2, we can see that, for example, a winning move could be to change * 20 to * 4.

\[
\begin{array}{c|c|c|c|c}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}
\]

Figure 2: Question 4, Part c, nimber sum.
5

\[a + b \text{ is odd if and only if } a \oplus b \text{ is odd.} \]
\[\implies (a + b \text{ is odd}): \text{W.L.O.G assume that } a \text{ is odd.} \]
Then, \(b \) has to be even.
Note how the xor of these two has to be odd given than the right-most bit is \(1 \oplus 0 = 1 \).

\[\iff (a \oplus b \text{ is odd}): \text{W.L.O.G assume that } a \text{ has the left most bit equal to } 1, \text{ meaning that } a \text{ is odd.} \]
Then, \(b \)'s right most bit has to be 0, making \(b \) even.
Note how the sum of \(a \) and \(b \) has to be odd.
Then we know that \(a + b - a \oplus b \) is even.

For any bit at location \(i \) in \(a \) and \(b \), we have \(a_i + b_i \geq a_i \oplus b_i \).
1. \(a_i = b_i \), then \(a_i + b_i = a_i \oplus b_i = 0 \).
2. \(a_i \neq b_i \) and \(b_i \), then \(a_i + b_i = a_i \oplus b_i = 1 \).
Then all the bits in \(a \oplus b \) are equal to those in \(a + b \).
Note how the left most bit of \(a + b \) is at least equal to the left most bit of \(a \oplus b \).
Then, \(a + b \geq a \oplus b \).

6

Let \(F \) represent a full cell and \(E \) an empty one.
Note how in a row, consecutive empty cells can be replaced by a single empty cell.

\(k = 0: \)
Board: \(|E| = *0 \), since it is a \(P \)-position.

\(k = 1: \)
Board: \(|F| = |E| = \{*0\} = *1 \).

\(k = 2: \)
Board: \(|F|F| = \{|F|,|E|\} = \{*0,*1\} = *2 \).

\(k = 3: \)
Board: \(|F|E|F| = \{|F|\} = \{*1\} = *0 \).

\(k = 4: \)
Board: \(|F|E|F|F| = \{|F|F|,|F|E|F|,|F|E|F|,|F|E|F|\} = \{*2,*0,*1\} = *3 \).
Board: \(|F|E|F|F|F| = \{|F|F|F|,|F|E|F|F|,|F|E|F|F|,|F|E|F|F|\} = \{*2,*0,*3,*3\} = *1 \).

\(k = 5: \)
Board: \(|F|E|F|F|F| = \{|F|F|F|,|F|E|F|F|F|,|F|E|F|F|F|,|F|E|F|F|F|\} = \{*3,*3,*1,*0\} = *2 \).
Board: \(|F|E|F|F|F|F| = \{|F|F|F|F|,|F|E|F|F|F|,|F|E|F|F|F|,|F|E|F|F|F|\} = \{*2,*0,*3,*3\} = *0 \).
Board: \(|F|E|F|F|F|F| = \{|F|F|F|F|,|F|E|F|F|F|F|,|F|E|F|F|F|F|,|F|E|F|F|F|\} = \{*1,*2,*0,*3,*3\} = *4 \).

\(k = 6: \)
Board: \(|F|F|F|F|F|F| = \{|F|F|F|F|,|F|E|F|F|F|F|,|F|E|F|F|F|F|,|F|E|F|F|F|F|\} = \{*4,*0,*1,*2,*0\} = *3 \).
Board: \(|F|E|F|F|F|F| = \{|F|F|F|F|,|F|E|F|F|F|,|F|E|F|F|F|,|F|E|F|F|F|\} = \{*1,*2,*0,*3,*1\} = *0 \).
Board: \(|F|F|F|F|E|F| = \{|F|F|F|F|,|F|E|F|E|F|,|F|E|F|F|\} = \{3,1,0\} = *2 \).
Board: \(|F|F|F|F|F| = \{|F|F|F|F|,|F|E|F|F|,|F|E|F|F|,|F|E|F|F|\} = *1 \).

Following the same step, the final number value for each \(k \) is:

- \(k = 0: *0 \)
• \(k = 1: *1\)
• \(k = 2: *2\)
• \(k = 3: *3\)
• \(k = 4: *1\)
• \(k = 5: *4\)
• \(k = 6: *3\)
• \(k = 7: *2\)
• \(k = 8: *1\)

7

a)
\[
\begin{align*}
[1|1] &= \{\} = *0 \\
[1|2] &= \{[1|1]\} = \{*0\} = *1 \\
[1|3] &= \{[1|2]\} = \{*1\} = *0 \\
[2|2] &= \{[1|1]\} = \{*0\} = *1 \\
[1|4] &= \{[1|3],[2|2]\} = \{*0,*1\} = *2 \\
[2|3] &= \{[1|1],[1|2]\} = \{*0,*1\} = *2 \\
[4|5] &= \{[1|3],[2|2],[1|4],[2|3]\} = \{*0,*1,*2,*2\} = \{*0,*1,*2\} = *3
\end{align*}
\]

b)
\[
\begin{align*}
*3 &\rightarrow 11 & *2 &\rightarrow 10 \\
\oplus & & \oplus \\
*2 &\rightarrow 10 & *2 &\rightarrow 10 \\
= & & = \\
01 &\rightarrow *1 & 00 &\rightarrow *0
\end{align*}
\]

Since \([1|4] = *2\) and \([2|3] = *2\), moving to either of these positions are winning moves. There are no other winning moves.

8

a)
\[
\begin{align*}
&1 & 2 & 1 & 2 & 1 & 2 \\
&0 & 3 & 0 & 3 & 0 & 1 \\
&0 & 3 & 0 & 1 & 0 & 3 \\
&0 & 3 & 0 & 1 & 0 & 3 \\
&0 & 1 & 0 & 1 & 0 & 1 \\
&0 & 1 & 0 & 1 & 0 & 1
\end{align*}
\]

b)
For position \((i, j)\), nimber is:

- \(*0\) if \(i, j\) are both odd.
- \(*2\) if \(i, j\) are both even.
- \(*3\) if exactly one of \(i, j\) is odd and it is the larger number.
- \(*1\) if exactly one of \(i, j\) is odd and it is the larger number.