
Puzzle	Solving	
(single-agent	search)	

Robert	Holte	
Compu.ng	Science	Department	

University	of	Alberta	

1	

Puzzle	=	1-player	game	

•  Examples:	
– Rubik’s	Cube	
– Sliding-.le	puzzle	

•  In	this	talk	puzzles	have	
– determinis.c	ac.ons	
– perfect	informa.on	

– no	chance	events	

2	

Puzzles	can	be	PSPACE-complete	
•  Sokoban	solvability	first	proven	PSPACE-complete	by	Joe	Culberson	

•  Visi.ng	expert:	André	Grahl	Pereira	

3	

Heuris:c	Search	

What	is	State	Space	Search?	

GIVEN	
– Start	state	
– Goal	state	
– Successor	func.on	(maps	a	state	to	a	set	of	states)	
– Cost	func.on	(if	x	is	a	successor	of	s,	cost(s,x)	is	the	
non-nega.ve	cost	of	reaching	x	from	s	(“edge	cost”))	

FIND	a	path	from	start	to	goal.	

Typically	want	to	minimize	path	length	(or	cost).	

5	

Successors	Defined	by	Operators	

•  Operators	(rules,	moves)	define	how	one	state	
can	be	transformed	into	another.	

•  An	operator	has	two	parts:	
– precondi:on:		defines	the	set	of	states	to	which	
the	operator	can	legally	be	applied.	

– effect:	defines	how	a	state	is	changed	when	the	
operator	is	applied	to	it.	

•  Also,	each	operator	has	a	non-nega.ve	cost		(in	
this	talk	all	operators	cost	1).	

6	

15-puzzle	Operators	(Example)	

•  DOWN(X):	move	the	.le	in	
loca.on	X	down.	

•  Precondi:ons:	
– X	≤	12	
–  loca.on	X+4	is	empty	

•  Effects:	
–  the	.le	that	was	in	X	is	now	in	X+4	
– X	is	now	empty	

7	

Generic	“Breadth-first”	Search	

1.  Put	the	start	state	on	priority	queue	OPEN	
2.  Repeat:	

a)  If	OPEN	is	empty,	exit	with	failure.	Otherwise…	
b)  Remove	a	state,	n,	from	OPEN.	
c)  If	n	is	a	goal	state,	exit	with	success.	Otherwise…	
d)  Compute	n’s	successors	(“expand”	state	n)	
e)  Add	a	successor	to	OPEN	if	it	has	never	been	

seen	before,	or	if	the	new	path	to	it	(via	n)	is	
cheaper	than	any	previously	generated	path	to	it.	

8	

Which	one?	

Heuris.c	Func.ons	

•  Like	an	evalua.on	func.on	in	a	game,	a	
heuris.c	func.on	maps	a	state	to	a	number	
indica.ng	how	promising	the	state	is.	

•  In	order	to	be	sure	of	returning	the	op.mal	
solu.on	(least-cost	path	to	goal),	the	heuris.c	
cannot	be	an	arbitrary	evalua.on	func.on.	

•  An	admissible	heuris.c	never	overes.mates	
distance	to	goal	(h(n)	≤	d(n,goal)	for	all	n).	

9	

Es.mate	the	distance	from	s	to	goal.	

1 2

3 4 5

6 7 8

8 1 4

3 5

6 7 2

s	 goal	

#	Misplaced	Tiles	=	3	

1 2

3 4 5

6 7 8

8 1 4

3 5

6 7 2

s	 goal	

Manhahan	Distance	=	8	

1 2

3 4 5

6 7 8

8 1 4

3 5

6 7 2

s	 goal	

MD(8) = 4
MD(4) = 2
MD(2) = 2
MD(other tiles) = 0

Heuris.cs	Speed	up	Search	

10,461,394,944,000 states

heuristic search examines 36,000

Nota.on	

•  g(n)	=	distance	from	start	to	
node	n	along	our	current	path	
(not	necessarily	op.mal)	

Start

n

Goal

g(n)

h(n)

•  h(n) = estimated distance
from n to goal

f(n)

•  f(n) = g(n)+h(n) = estimated
distance from start to goal via n
(using our current path to n)

Generic	“Breadth-first”	Search	

1.  Put	the	start	state	on	priority	queue	OPEN	
2.  Repeat:	

a)  If	OPEN	is	empty,	exit	with	failure.	Otherwise…	
b)  Remove	a	state,	n,	from	OPEN.	
c)  If	n	is	a	goal	state,	exit	with	success.	Otherwise…	
d)  Compute	n’s	successors	(“expand”	state	n)	
e)  Add	a	successor	to	OPEN	if	it	has	never	been	

seen	before,	or	if	the	new	path	to	it	(via	n)	is	
cheaper	than	any	previously	generated	path	to	it.	

15	

Which	one?	

Which	State	to	Remove	From	OPEN?	

•  Dijkstra’s	algorithm:	minimum	g(n)	
•  A*:	minimum	f(n)	

– A*	with	an	admissible	heuris.c	is	guaranteed	to	
return	an	op.mal	solu.on.	

– The	same	is	true	of	IDA*	(Itera.ve	Deepening	A*),	
a	depth-first	version	of	the	basic	algorithm	that	
needs	memory	linear	in	the	solu.on	depth	(A*	
can	require	exponen.al	memory).	

16	

Using	Abstrac:on	
to	Create	Heuris:cs	

The	Big	Idea	

Create a simplified version of your problem.

Use the exact distances in the simplified version
 as heuristic estimates in the original.

Example:	8-puzzle	

1 2

3 4 5

6 7 8

Domain = blank 1 2 3 4 5 6 7 8

181,440 states

Domain	abstrac.on			

1 2

3 4 5

6 7 8

state abstract state

Abstract = blank
Domain = blank 1 2 3 4 5 6 7 8

Abstract	State	Space	

φ(goal)

Calcula.ng	h(s)	

Given	a	state,	s	
8 1 4
3 5
6 7 2

2

Compute the corresponding
abstract state, φ(s)

h(s) = distance(φ(s),φ(goal)) =

Finer-grained	Domain	Abstrac.on			

1 2

3 4 5

6 7 8 6 7 8

30,240 abstract statesDomain = blank 1 2 3 4 5 6 7 8
Abstract = blank 6 7 8

Other	Ways	to	Create	Heuris.cs	

•  Domain	Abstrac.on	is	by	no	means	the	only	
way	to	create	heuris.cs.	

•  Devising	new	ways	to	es.mate	distances	in	a	
state	space	is	an	ac.ve	research	area.	Recent	
methods	include:	
– Merge-and-Shrink	Abstrac.on	
– Cartesian	Abstrac.on	
– Delete	Relaxa.on	(and	red/black	versions)	
– hm	

– Operator-coun.ng	methods	

Towards	a	
High-Performance	Compiler	

for	State-Space	Search	

joint	work	with	Neil	Burch	

25	

How	to	Represent	a	State	Space?	

1.   Domain-specific:	write	specialized	code	for	each	
state	space.	
– High	performance	(memory	and	.me)	
– Lihle	code	re-use	from	one	space	to	another	
– “procedural”	representa.on	of	the	successor	func.on	

2.   Domain-independent:	write	the	state	space	
defini.on	in	a	declara.ve	language.	
– Completely	generic	data	structures	and	algorithms	

– Declara.ve	rep.	allows	reasoning	about	the	space	Efficiency	rela:ve	to	domain-specific??	

26	

PSVN	

•  State	=	vector	of	length	N.	
– Each	entry	of	the	vector	is	called	a	state	variable.	
– Each	state	variable	has	a	finite	domain	of	possible	
values.	

•  Each	operator	is	of	the	form	LHS	=>	RHS.	
– LHS	is	the	operator’s	precondi.on	
– RHS	is	the	operator’s	effect	
– Both	are	vectors	of	length	N.	Each	entry	is	either:	

•  Constant	(from	the	appropriate	domain)	
•  Variable	(same	variable	can	occur	more	than	once)	

27	

Examples	(N=4)	

 0 A B X => 0 B A X

 X A A B => B A A B COST 5

In	these	examples,	numbers	are	constants	and	lehers	are	variables.	

28	

The	4-Arrow	Puzzle	

operator	Mi:		flip	Ai	and	Ai+1	

A1	
A2	

M1	 M2	 M3	

A3	
A4	

29	

4-Arrow	Puzzle,	M1	PSVN	Rules	

0 0 A B => 1 1 A B

0 1 A B => 1 0 A B

1 0 A B => 0 1 A B

1 1 A B => 0 0 A B

The	PSVN	rules	for	M2	and	M3		are	similar.	

30	

How	to	Represent	a	State	Space?	

1.   Domain-specific:	write	specialized	code	for	each	
state	space.	
– High	performance	(memory	and	.me)	
– Lihle	code	re-use	from	one	space	to	another	
– “procedural”	representa.on	of	the	successor	func.on	

2.   Domain-independent:	write	the	state	space	
defini.on	in	a	declara.ve	language.	
– Completely	generic	data	structures	and	algorithms	

– Declara.ve	rep.	allows	reasoning	about	the	space	Efficiency	rela:ve	to	domain-specific??	

31	

Research	Goal	

•  Build	a	domain-independent	state-space	search	
system	whose	performance	on	any	given	
domain	is	equal	(or	superior)	to	good	domain-
specific	code.	
(performance	=	memory	usage	as	well	as	run	.me)	

•  Approach:	Compile	(translate)	PSVN	to	C	code.	

32	

psvn2c,	a	Compiler	for	PSVN	

33	

Your	C/C++	search	code,	
wri^en	using	the	PSVN	API	

PSVN	defini:on	of	
state	space	S	

psvn2c	
C	code	for	
S’s	PSVN	API	

C/C++	
compiler	

Your	C/C++	search	code,	
specialized	to	search	S	

Itera.ng	Through	a	State’s	Children	

init_forward_iter(iter);

while((rule=next_fwd_iter(

 iter,&state)) >= 0){

apply_fwd_rule(rule,&state,&child);

if(is_goal(&child))

 ...

}

34	

Why	Am	I	Op.mis.c?	

1.  Compilers	are	capable	of	deeper,	more	
complex,	and	more	thorough	analysis	than	
(most)	humans	(for	the	part	of	the	code	the	
compiler	is	responsible	for).	

2.  Many	of	the	domain	proper.es	exploited	by	
humans	in	wri.ng	domain-specific	code	can	
be	automa.cally	detected	(and	then	
exploited	in	the	same	way).	

35	

Knowledge	of	Redundant	Sequences	

•  Rubik’s	Cube	branching	factor	reduced	from	
18	to	13.35:	
“Since	twis.ng	the	same	face	twice	in	a	row	is	redundant,	ruling	
out	such	moves	reduces	the	branching	factor	to	15	aqer	the	first	
move.	Furthermore,	twists	of	opposite	faces	of	the	cube	are	
independent	and	commuta.ve...	Thus,	for	each	pair	of	opposite	
faces	we	arbitrarily	chose	an	order,	and	forbid	moves	that	twist	the	
two	faces	consecu.vely	in	the	opposite	order.”	
																																																																														(Rich	Korf,	AAAI,	1997)	

•  (16,4)-TopSpin	branching	factor	reduced	from	
16	to	8.9	
																																																																			(Uzi	Zahavi)	

36	

psvn2c’s	analysis	is	more	extensive,	
reduces	it	to	7.8	

Goal:	Automa.cally	Eliminate	
Redundant	Operator	Sequences	

•  Operator	sequence	R	is	redundant	with	operator	
sequence	S	iff:	
1.  Cost(R)	≥	Cost(S)	
2.  Matches(x,R)	⇒	Matches(x,S)	
3.  Matches(x,R)	⇒	R(x)=S(x)		

•  If	we	can	automa.cally	determine	that	R	≥	S,	we	can	
avoid	duplicate	effort	by	refusing	to	fully	execute	R	–	
we	execute	all	of	R	except	its	last	operator	(“move”),	
hence	the	name	“move	pruning”.	

37	

Nota.on:			R	≥	S			means			
R	is	redundant	with	S.	

Checking	Single	Operators	

Operator	R	is	redundant	with	operator	S	iff:	
1.  Cost(R)	≥	Cost(S)		……	trivial	to	check	
2.  Matches(x,R)	⇒	Matches(x,S)	

										……	is	R’s	LHS	more	specific	than	S’s	?	
1.  Matches(x,R)	⇒	R(x)=S(x)	

										……	afer	unifying	LHS’s	are	the	RHS’s	iden:cal?	

38	

Example		

(R)				0 0 1 A => 1 0 A 1
(S)				W W X Y => 1 W Y X

39	

1.  Cost(R)	≥	Cost(S)		……	yes	
2.  Matches(x,R)	⇒	Matches(x,S)	……	W=0, X=1, Y=A	

3.  Matches(x,R)	⇒	R(x)=S(x)		……	S’s	RHS	=	1 0 A 1

What	about	operator	sequences?	

Example:	4-Arrow	Puzzle	

•  OP1	and	OP3	obviously	are	commuta.ve	since	
the	variables	they	change	are	different.	

1111	

1100	0011	

OP1	 OP3	

0000	

OP1	OP3	

Macro-Operators	

•  Any	sequence	of	PSVN	operators	can	be	
represented	by	a	single	PSVN	operator	(“macro-
operator”).	

•  The	macro-operator’s	LHS	represents	the	
condi.ons	that	must	be	true	for	the	en.re	
sequence	to	be	executed.	

•  Its	RHS	represents	the	net	effect	of	applying	the	
en.re	sequence	of	operators.	

•  Simple	itera.ve	“move	composi.on”	algorithm	
for	construc.ng	the	macro-op	for	a	sequence.	

41	

Example	(4-Arrow	Puzzle)	

0 0 A B => 1 1 A B

X 1 0 Y => X 0 1 Y

42	

Example	(4-Arrow	Puzzle)	

0 0 A B => 1 1 A B

 X 1 0 Y => X 0 1 Y

Macro-operator:	

0 0 0 B => 1 0 1 B

43	

PSVN’s	Move	Pruning	(version	1)	

1.  Create	a	macro-operator	for	every	PSVN	rule	
sequence	length	L	or	less.	

2.  Compare	every	macro-op	(R)	to	every	other	
macro-op	(S):		
a)  If	R	>	S,	mark	R	for	move	pruning.	

b)  If	R	≡	S,	mark	one	of	them	for	move	pruning.	

44	

is	this	correct?	

Move	Pruning	Gone	Wrong	

•  There	are	8	op.mal	solu.ons,	and	quite	a	few	redundant	
operator	sequences.	

•  If	all	the	redundant	operator	sequences	are	eliminated,	
no	op.mal	solu.ons	remain!	 45	

1	3	

2	

1	

3	2	

1

2

3

1 2 3

What	Goes	Wrong?	

Three	of	the	redundancies	discovered:	
1.  												12R-11D			≡		11D-12R	
2.  				11D-12R-21R			>			12R-11R-12D	
3.  				11R-12D-31U			>			11D-21R-31	

Three	of	the	op.mal	solu.ons:	

46	
11D-12R-21R-31U	

12R-11R-12D-31U	12R-11D-21R-31U	

What	Goes	Wrong?	

Three	of	the	redundancies	discovered:	
1.  												12R-11D			≡		11D-12R	
2.  				11D-12R-21R			>			12R-11R-12D	
3.  				11R-12D-31U			>			11D-21R-31	

Three	of	the	op.mal	solu.ons:	

47	
11D-12R-21R-31U	

12R-11R-12D-31U	12R-11D-21R-31U	

Redundancy	1	

What	Goes	Wrong?	

Three	of	the	redundancies	discovered:	
1.  												12R-11D			≡		11D-12R	
2.  				11D-12R-21R			>			12R-11R-12D	
3.  				11R-12D-31U			>			11D-21R-31U	

Three	of	the	op.mal	solu.ons:	

48	
11D-12R-21R-31U	

12R-11R-12D-31U	12R-11D-21R-31U	

Redundancy	1	 Redundancy	2	

What	Goes	Wrong?	

Three	of	the	redundancies	discovered:	
1.  												12R-11D			≡		11D-12R	
2.  				11D-12R-21R			>			12R-11R-12D	
3.  				11R-12D-31U			>			11D-21R-31U	

Three	of	the	op.mal	solu.ons:	

49	
11D-12R-21R-31U	

12R-11R-12D-31U	12R-11D-21R-31U	

Redundancy	1	 Redundancy	2	

Redundancy	3	

Provably	Correct	Solu.on	

•  Impose	an	order	on	the	operators.	This	induces	an	
order	on	the	sequences	(e.g.	lexicographic	order).	

•  Only	allow	sequence	R	to	be	pruned	if	it	is	
redundant	with	a	sequence	S	that	is	earlier	in	the	
order	than	R.	

•  This	ensures	no	move	pruning	cycles	exist,	so	at	
least	one	op.mal	solu.on	will	remain	unpruned.	

50	

Experimental	Evalua.on	

•  Depth-first	search	to	depth	d.	
•  Basic	version	uses	parent-pruning	(PP).	

•  Compare	that	to	a	version	with	no	PP	but	with	
move	pruning	(MP)	
! 	for	sequences	of	length	L=2	or	less	
! 	for	sequences	of	length	L=3	or	less	

51	

A	 B	 A	

Results	(totals	over	100	states)	

Domain	
(depth)	

PP	 MP,		L=2	 MP,	L=3	

16-Arrow	
Puzzle	(15)	 >	3600s	 0.39s	 0.39s	

(14,3)-TopSpin	
(9)	 >	3600s	 53.60s	 9.96s	

Work	or	Golf	
(13)	 >	3600s	 19.76s	 5.60s	

52	

Results	(.me	required	for	MP)	

Domain	
(depth)	

PP	 MP,		L=2	 MP,	L=3	

16-Arrow	
Puzzle	(15)	 >	3600s	

0.07s	
0.39s	

18.58s	
0.39s	

(14,3)-TopSpin	
(9)	 >	3600s	

<	0.01s	
53.60s	

1.11s	
9.96s	

Work	or	Golf	
(13)	 >	3600s	

2.98s	
19.76s	

15m	4s	
5.60s	

53	

Move	Pruning	Summary	

Automa.c	move	pruning	methods…	
•  equal	or	exceed	human	analysis	(e.g.	TopSpin,	
Rubik’s	Cube,	15-puzzle,	Towers	of	Hanoi)	

•  Apply	to	domains	which	are	tricky	to	do	correctly	
(Work	or	Golf)	

•  Even	if	they	just	accomplish	parent-pruning,	they	
are	faster	

•  Are	tricky…	needed	a	formal	proof	of	correctness	
to	be	sure	our	method	was	sound	

54	

Conclusion	

•  A	compiler	for	state	spaces	can	generate	high-
performance	code.	

•  Automa.c	move	pruning	analysis	can	be	of	
enormous	benefit	to	algorithms	based	on	
depth-first	search,	and	can	exceed	what	
people	would	do	by	hand.	

•  Rigorous	formal	analysis	has	been	necessary	
to	guarantee	correctness.	

55	

Interested	in	trying	PSVN?	
Contact	me	–	rholte@ualberta.ca	

UNUSED	

56	

“Serious”	Puzzles	

•  Pickup	&	Delivery	(logis.cs)	problems	
•  Pathfinding	problems	

– GPS	naviga.on	
– computer	games	

•  Planning	problems	(find	a	sequence	of	ac.ons	
that	achieves	a	goal	given	the	current	situa.on)	

•  Edit	distance	
– biological	sequence	alignment	

57	

Heuris.cs	Defined	by	Abstrac.on	

•  An	abstrac:on	of	state	space	S	is	any	state	
space	φ(S)	such	that:	

–  for	every	state	s∈S	there	is	a	corresponding	state	
φ(s)	∈	φ(S).	

– distance(φ(s1),	φ(s2))	≤	distance(s1,s2).	

•  Exact	distances	in	φ(S)	are	admissible	and	
consistent	heuris.cs	for	searching	in	S.	

Two	Research	Communi.es	

•  Heuris.c	Search	
–  technology	focused	(state-space	search	guided	by	a	
heuris.c	func.on,	a	lot	like	game-tree	algorithms)	

– usually	interested	in	op.mal	(least-cost)	solu.ons	

•  Planning	
–  task	focused	(“find	a	sequence	of	ac.ons	…”)	
– uses	a	variety	of	technologies	(e.g.	SAT)	
– “sa.sficing”,	not	(much)	concerned	with	solu.on	cost	

•  Historically	separate,	but	today	the	best	planners	
use	heuris.c	search.	

59	

Example	of	Problem-Specific	Code	

•  “Implemen.ng	Fast	Heuris.c	Search	Code”,	
Ethan	Burns	et	al.	SoCS	2012	

•  High-performance	implementa.on	of	IDA*	for	
the	15-puzzle,	based	on	three	main	ideas.	

60	

Burns	et	al.,		IDEA	#1	

“replace	virtual	method	calls	with	C++	templates	…	
the	template	instan.ates	our	search	algorithm	at	
compile-.me	…	all	virtual	method	calls	are	
replaced	with	normal	func.on	calls…”	

61	

Our	approach	largely	achieves	this,									
your	search	code	is	generic	and	is	

specialized	for	a	domain	at	compile	:me.	

Burns	et	al.,		IDEA	#2	

Exploit:	every	operator	in	the	15-puzzle	is	1-to-1.	

(operator	op	is	1-to-1	iff		op(x)=op(y)	⇒		x=y)	

Example	(4-Arrow	puzzle	operator):	
0 0 A B => 1 1 A B

If	I	tell	you	state						1 1 0 1 		was	produced	
by	this	operator,	you	know	that	the	state	it	was	
produced	from	is				0 0 0 1	.	
You	can’t	do	this	if	the	operator	used	was	

X Y A B => 1 1 A B	
62	

A	PSVN	rule	is	1-to-1	iff	all	the	variables	
in	its	LHS	occur	in	its	RHS.	

Burns	et	al.,		IDEA	#3	

Exploit:	every	operator	in	the	15-puzzle	has	an	
inverse,	and	we	know	which	operator	it	is.	

63	

Can	we	automa:cally	determine	if	a	PSVN	
rule	has	an	inverse	among	the	rules?	

YES	

Transposi.ons	

•  Transposi.on	=	two	operator	sequences	that	
lead	to	the	same	state.	

•  For	example,	in	the	space	below	there	are	two	
operators	that	lead	from	S0	to	S1.		

•  How	many	sequences	are	there	from	S0	to	Sn?	

S0	 S1	 S2	 Sn	…	

Goal:	Automa.cally	Eliminate	
Redundant	Operator	Sequences	

•  Operator	sequence	R	is	redundant	with	operator	
sequence	S	iff:	
1.  Cost(R)	≥	Cost(S)	
2.  Pre(R)	⊆	Pre(S)	
3.  R(x)=S(x)	for	all	x	ϵ Pre(R)		

•  If	we	can	automa.cally	determine	that	R	≥	S,	we	can	
avoid	duplicate	effort	by	refusing	to	fully	execute	R	–	
we	execute	all	of	R	except	its	last	operator	(“move”),	
hence	the	name	“move	pruning”.	

65	

Nota.on:			R	≥	S			means			
R	is	redundant	with	S.	

Checking	Single	Operators	

Operator	R	is	redundant	with	operator	S	iff:	
1.  Cost(R)	≥	Cost(S)		……	trivial	to	check	
2.  Pre(R)	⊆	Pre(S)					……	is	R’s	LHS	more	specific	than	S’s	?	

3.  R(x)=S(x)	for	all	x	ϵ Pre(R)	
										……	afer	unifying	LHS’s	are	the	RHS’s	iden:cal?	

66	

Example		

(R)				0 0 1 A => 1 0 A 1
(S)				W W X Y => 1 W Y X

67	

1.  Cost(R)	≥	Cost(S)		……	yes	
2.  Pre(R)	⊆	Pre(S)					……	W=0, X=1, Y=A	

3.  R(x)=S(x)	for	all	x	ϵ Pre(R)		……	S’s	LHS	=	1 0 A 1

What	about	operator	sequences?	

What	is	State-Space	Search?	

GIVEN:	
– Start	state	
– Goal	state	(some.mes:	goal	test)	
– Successor	func.on	(maps	a	state	to	a	set	of	states)	

FIND	a	path	from	start	to	goal.	

Path	=	sequence	of	states:			S1,S2,…,SN	such	that		
Si+1	∊ successors(Si)	

Typically	want	to	minimize	path	length	(or	cost).	
68	

