Fuegito

User Manual
Colin Hunt

2012

Table of Contents

LLaE e T ¥ ot o o TN 4
DESIGN GOALS cucivuietiesirrsr s R
Main Functionality

Overview of Main Classes and Their Interaction.........cccccceeeiiriirinnniiinnininnncniinnniennnen. 5
GENIETAL OVETVIEW ..ceereveeereeseesseesssessesssesssesssssss s ss s ss bbb s8R RS sseEEERReRseEnR 5
L2 T 6
N7 Y-t 4ol OO 6
N7 (1 = OO
TicTacToe Example
Details and EXTENSIONS ...ccuuuiiiiiiiimeniiiiiiiienmniiiniiienmsesssiiimesssssssssiisssssssssssssssnssssssssssssnnns 8
Main Interfaces
Defined Types
N Ll LA T L =) (s Lol 9
SGGridBaASCAGAME INEETFACE ..vuoververserssirssirsssssnsrissssssssessssssss s s ssssssssssssssassssessssssssssssssssssssassssassssens 10
R Y0 ol 0 L= s Lol N 10
SgPlayer Interface
EXEENSIONS ettt b s
Ny =60 ol e 1 TR
SPECIIC S@ATCN ALGOTIEATNS coovvvesvesrsrerssrrssstrsssssssssss s sssssesssssssss s sssssssssassssasss s s ssssssssssssssassssasssenss 12
Specific Players

Move Timer

HOSR TODIE ...coooeversirtssirisss v ssisrisssesssssesisss s sssssisssessassssssssssessssss s s sssssssssessssss s ssssnasssssssnssssssssesssnssss

Monte Carlo SIMUIALION POLICYccweureeeosrerossersserssesissssissssssssssssessssessssessssssasssssssssssssessssessssessssssasssasssenns 21

SGGTIABASCAGAMERECOT . cccooovosvesversersserssssinsssissssisss i sssssssssissssissssisss s sssssssssassssassssassssasssssssssssssssansssassssenns 21

L0 1) LR o o N 22
Using and EXtending FUEEGItOcc.ucirieeniirieeiiiiieierirecerrenneerreansseensesseensseseenssessensnessenes

Choices for Extending FUEZILO ...ttt sasssasssns
Implementing Your Own Game............

Implementing Your Own Search
Implementing Your Own Player

Registering Your Class with the User INterfaces...... s ssessesssesssseens 26
Example using AvVerage Player..... s sssssassses 27
HOoW t0 dO IMProvemMENtsccceeeeiiiieeiiriieiiiiieceierneeerenseesensessenssssssnssesssnssessensssssenns

Write your own variation 0f MONte Carlo ... seeeesessessssssssssssssssesssessesssssssssessees
Write an Evaluation Function for Alpha Beta Search

Building Fuegito from SOUICEfOTZE ... ssssssssssssans 30
P 31
Starting Fuegito from the TerMiNal ... issirsssisssssissssssisssisssssisesssssssssssssassssssasssssssssssasssssses 31
SEANAATA COMMUANS ovvorrervrrerissserisisersisssersssssesissssesissssssasssessssesssisssssssssssssasssessssessssssssssssssssssssssssssasesssasssassessen 31
Fuegito Custom GTP COMMANGSccovcrcnscrsnsiisisssississsisiosssisissssisisssissassssssssssssssssssessssssassssssassssssssssssssssss 31
Adding EXtra GTP COMMAIAS ..uoveervvvsserossirssesissessaseses 32
REFEIENCES... .ttt 34
Planned Additions to the Manual..........ccconiiiiiiiiiiiiiiiiiiiinnnninieen 35

Introduction

Fuegito is designed from the start to be a simple, universal framework for implementing games
and search algorithms. Specifically, Fuegito is concerned with two-player, deterministic games
that use perfect information and game-tree search algorithms. In this section we will explore
the design goals of Fuegito as well as the framework’s main functionality.

Design Goals
The principal design goals for Fuegito are as follows.

Keeping Similarity with Fuego

Fuegito was conceived in part to act as an analogue with Fuego[1], an orders of magnitude more
complex, professional-level, game-playing program. To this end, Fuegito was designed with a
similar overall structure to its modules and classes. Same or similar names have been retained
as those of Fuego to reinforce this idea. All this is done to allow an easier transition for those
who wish to step-up to developing for the more complex Fuego. Literally, Fuego is fire and
Fuegito is little fire.

Simplicity

While Fuegito was inspired by Fuego, Fuegito is primarily concerned with simplicity in its
design and ease of use. This means that some of the more powerful features of Fuego and some
of the performance are sacrificed in the name of keeping things straightforward. This is done to
allow Fuegito to be more accessible to an introductory level audience. Those interested in
starting with game programming can start with an existing framework and quickly program up
a new game or search algorithm quickly and easily.

Extensibility

Fuegito should be highly extensible and flexible. Users should be able to implement any new
game, any new player, and/or any new search and use them in any combination with the
existing games, players, and searches. Fuegito is meant as a starting point to build from; it
should make it as easy as possible, with as few barriers as possible.

Provide a Framework for Teaching

Fuegito’s simplicity and extensibility make it an ideal framework for teaching purposes. Anyone
with some introductory C++ knowledge, or those who are currently learning C++, should find
Fuegito accessible to them. This makes Fuegito ideal as a teaching tool in a game-programming
course concerned with the fundamentals. Fuegito’s extensibility means it will also be relevant in
amore advanced course. An instructor or teaching assistants can more quickly program the
specific games and algorithms that his or her course is concerned with in order to study them;
they could also assign these tasks to the students as an exercise.

Easy to Combine Different Games and Algorithms

Fuegito uses general interfaces between all its games, players, and search algorithms. This
ensures that any specific implementations will work with each other. New games can be played
with any player, new players can play any game, etc. All specific functionality is encapsulated in
derived classes that use a public interface. Game-specific functionality in algorithms should be
provided by the game classes themselves, freeing the algorithms from those details.

Provide Reasonable Default Implementations but allow Game-Specific
Overrides

Fuegito is not just a hollow framework. It provides a number of concrete implementations for
games, searches, and players to enable you to immediately start playing with Fuegito. If all you
want is to implement a new game, you can use existing players and game-playing algorithms
with it right away. Or, if you just want to see how a game-specific enhancement improves alpha
beta search with Clobber, just write the improvement and get instant feedback. Or write
completely new games, searches, and players ignoring all the existing implementations.

Standalone Open Source Program Written Entirely in Standard C++

Fuegito is open source and written entirely in C++, using nothing but the Standard Library. This
mirrors Fuego as well as enables Fuegito to be highly portable across multiple platforms with no
external dependencies.

Main Functionality

A Framework For 2-player Deterministic Games with Perfect Information
Fuegito is concerned with modeling two-player, deterministic games with perfect information.
Any game that fits these criteria should be implementable in Fuegito.

Library of Simple Standard Game-Playing Algorithms and Players
Next to the games, Fuegito is designed to implement game-tree search algorithms to operate on
these games and players that use algorithms to play these games.

Interaction with External Users and Programs

Fuegito does not exist in isolation. It provides two interfaces that allow it to interact with the
outside world. The first is Go Text Protocol, or GTP, which is a popular standard for game text
interfaces[2]. The second is a simple graphical Ul provided as a separate program that
communicates with Fuegito via GTP commands. Please see the relevant sections for more
information.

Overview of Main Classes and Their Interaction

Fuegito is divided up into three main modules and one application. The modules are grouped
under the ‘SmartGame’ moniker that is a naming convention used in Fuego. The modules are
SgGame, SgSearch, and SgPlayer. Each module defines an interface through which the other
modules can interact with it. The interface for each module consists of public methods of a
primary abstract base class, global constants, and custom defined classes and types.

General Overview
The dependencies between the modules form a triangle, as

shown in Figure 1. SgGame is at the top, with no
> S dependencies; SgSearch depends on SgGame; and SgPlayer
l," ‘\‘ depends on SgGame and SgSearch. Figure 2 shows the class
‘ * relationships.
(SgPlayer } -- ->(SgSearch]

FIGURE 1: FUEGITO MAIN MODULES.

SgGame
SgGame is abstract and depends on no other

. . SgGame
classes or modules. It defines the interface for Abstract class
B . . to represent a
representing a game in Fuegito. Concrete game
game classes can inherit directly from 4
SgGame. SgGridBasedGame is another — I
. . SgGridBasedGame ConcreteGamel
abstract class that inherits from SgGame and Abstract class to represent a
game based on a playing grid copy of

provides data and methods that are general to
games that use playing grids, such as a Go or

Chess board. A concrete grid-style game |ConcreteGridGame| | GameCo_'—rzx
inherits from SgGridBasedGame. An example

i contains
will follow below. | uses
SgSearch SgPlayer
S g Searc h Abstract class Abstract class to ||
. . to represent a represent a
SgSearch is an abstract class that defines the search player
/\ /\

interface for a search algorithm. Concrete
searches can inherit directly from SgSearch.
SgSearch contains a pointer to an external
SgGame-derived object that it performs the
search on. Fuegito provides a considerable
number of specific implementations of
different searchs.

ConcretePlayer

uses

FIGURE 2: MAIN CLASS RELATIONSHIPS.

SgPlayer

SgPlayer is an abstract class that defines the interface for a player. Concrete players can inherit
directly from SgPlayer. SgPlayer contains a copy of an external SgGame-derived object that
represents the game that it is playing. Concrete players can use an SgSearch object to do a
search of the game to help it pick a move to play. This is done by instantiating a search object
that uses the player’s copy of the game, running the search, getting the result, and then
destroying the search object. Because the search object is only created when it is needed, it
frees the player from being restricted to one search type at a time. The player object can
instantiate as many search objects of various types as it needs to aid in selecting a move. For
example, a player could start off using Monte Carlo search and then switch to Alpha Beta in the
end game. See the MixedMcAbPlayer class for an example of this.

Using these relationships, Fuegito allows great flexibility between games, searches, and players.
Any search can be used with any game, any game with any player, and any player with any
search.

TicTacToe Example
For an illustration of the class relationships on the code level, we will look at how a round of Tic
Tac Toe would be played.

Suppose you elect to play a game of Tic Tac Toe against one Alpha Beta player who plays with a
depth setting of 3. First, a TicTacToeGame instance needs to be created to represent the game

being played between two players. TicTacToeGame is a concrete class that inherits from
SgGridBasedGame.

TicTacToeGame ttt;

Next, an AlphaBetaPlayer instance is created and we pass the constructor our game object,
which side the player is on (white or black), the depth that we want to search to, and the
traditional settings for alpha and beta. Also given is a name for our player. AlphaBetaPlayer
inherits from SgPlayer. Within the logic for generating a move, we would see that
AlphaBetaPlayer uses an instance of AlphaBetaSearch. AlphaBetaSearch derives from SgSearch.

int depth = 3;
double alpha = -DBL_INFINITY, beta = DBL_INFINITY;
AlphaBetaPlayer abPlayer(ttt, SG_BLACK, depth, alpha, beta, "ShallowHall");

For illustration purposes, we will setup a simple game loop that will handle displaying the
board, getting moves from the user, asking the player to generate moves, and playing those
moves in the game. The loop also checks to see when the game has ended. The FuegitoEngine
class is responsible for implementing such a loop with GTP functionality.

while (!ttt.EndOfGame()) {
ttt.Print(cout);
SgMove humanMove = GetHumanMove(cin);
ttt.Play(humanMove);
ttt.Print(cout);
if (ttt.EndOfGame()) break;
SgMove aiMove = abPlayer.GenerateMove();
ttt.Play(aiMove);

}

Here is what is going on:

ttt. EndOfGame() is tested at each iteration of the loop to detect when the game is over.
ttt.Print() is called to display a text-representation of the board to the standard output stream.
The user’s move they wish to make is received.

ttt.Play(humanMove) is called to record the user’s move and ttt.Print() is called again to display
the change.

abPlayer.GenerateMove() is now invoked in order to get abPlayer’s move choice.
GenerateMove() makes a copy of the outside game instance for the player that then uses that
copy in conducting the search. GenerateMove() invokes the player-specific functionality by
calling DerivedGenerateMove().
SgMove DerivedGenerateMove() {
AlphaBetaSearch abSearch(Board(), Color(), Hash(), Depth(), Alpha(), Beta());

SgMove move = abSearch.GenerateMove();
return move;

Inside DerivedGenerateMove(), abPlayer creates an AlphaBetaSearch instance abSearch that,
using getter methods, takes a pointer to the player’s internal copy of the game, the player’s

color, the player’s hash table (not seen in this example), the search parameters, and returns a
pointer to an alpha beta search object.

To actually select a move, abPlayer now calls abSearch.GenerateMove(). GenerateMove() in the
search object traverses the game tree to a depth level of 3. At first this is not deep enough, so
when it runs out of depth it calls ttt.Evaluate(). Evaluate() is a game-specific method that, in this
instance, evaluates the Tic Tac Toe position that the search is currently looking at. It returns a
value to the search indicating how good or bad the position is for the player.

When the search is done, the player returns the resulting move to the game loop.
ttt.Play(aiMove) and ttt.Print() are once again called to reflect the player making its move.

This process repeats until the game is over.

Details and Extensions

There are many details of the Fuegito main interfaces that need to be discussed, as well as some
of the major extensions in functionality that Fuegito provides.

Main Interfaces
As mentioned previously, Fuegito provides three main interfaces. They are SgGame, SgSearch,
and SgPlayer. The framework also provides its own type definitions to use with the interfaces.

Defined Types
SgGame

* SgGameDefines.h

o SgBlackWhite
An SgState type that only takes black or white values.

o SgBlackWhiteEmpty
SgState type that takes black, white, and empty values.

o SgMove
Type to represent a move as an integer.

o SgState
State of a game element (white, black, empty, border).

* SgGridBasedGameDefines.h
o SgGrid

A type representing grid-related values (row#, column#, #rows, #columns, etc.).

o SgPoint
Type that represents a point that can index into the game board.

SgSearch

e SgSearch.h

o SgSearchHashTable
Hash table used in SgSearch classes.

SgUtilities

e SgHash.h

o SgHashCode
64-bit type that represents a hash code.

e SgTimer.h

o SgTimerValue
Type to use for values with SgTimer.

SgGame Interface
The following methods define the interface for interacting with an SgGame object.

Methods

SgGamex Copy() const
Virtual copy constructor.

bool Play(SgMove move)

Plays a move specified by move. For turn-based games, plays the move for the current side to
play and then switches the current side. Returns whether or not the move was successfully
played.

bool Play(SgBlackWhite color, SgMove move)
Plays a move and color combination.

bool TakeBack()
Takes back the last played move, restoring the game to the condition it was in before the move
was made. Returns whether or not the take back was successful.

bool EndOfGame() const
Returns whether or not the game is over.

bool HasWin() const
Returns whether or not there is a winner.

void Generate(vector<SgMove>& moves) const
Generates all legal moves for the current game position and stores them in the vector pointed to
by moves.

void GenerateAll(vector<SgMove>& moves) const

Generates the set of all possible moves that can arise during a game and stores it in the vector
pointed to by moves. Unlike Generate(), not all moves in this list may be legal for the current
position. This is the superset for all possible move lists.

bool Legal(SgBlackWhite color, SgMove move) const
Returns whether or not move is a legal move that can be played from the current position and
color.

SgBlackWhite GetToPlay() const
Returns the current side to play—black or white.

SgBlackWhiteEmpty GetWinner() const
Returns the winner of the game—black, white, or empty. Returns empty on a draw or if there is
currently no winner.

SgHashCode GetHashCode() const
Returns the SgHashCode representation of the current game position. This function allows
storing of game positions and information in a hash lookup table for use in search algorithms.

void Print(ostream& out) const
Writes the text representation of the current game position to the stream pointed to by out.

double Evaluate() const
Evaluate the current position as being good or bad for the current player. Used by search
algorithms.

void SwitchToPlay()
Changes which side is currently the side to play.

Example
For an example, please see the Tic Tac Toe example in the previous chapter.

SgGridBasedGame Interface
SgGridBasedGame extends SgGame with functionality specific to games that use playing grids.
Methods

SgGrid GetRows() const
Return the number of rows in the game.

SgGrid GetCols() const
Return the number of columns in the game.

SgPoint GetSize() const
Return the size of the game board as the number of points on the board including border points.
If default size settings are used, the board size may be much larger than the actual playing size.

SgState GetState(SgPoint p) const
Returns the state of the board at the point p as black, white, empty, or border.

SgState GetState(SgGrid row, SgGrid col) const
Same as above except the point is specified by a row row and column col.

SgSearch Interface
The SgSearch interface is very brief as it only consists of one method.

10

Methods

SgMove GenerateMove()

Instructs the search algorithm to generate and return a legal move that can be played for the
search’s color in the current game position. The search’s color is the color it was constructed
with or the current side to play for the game when it was constructed. If it cannot generate a
legal move for whatever reason, it should return SG_ZNULLMOVE.

Example
Suppose MySearchAlgorithm inherits from SgSearch. In general, for any SgSearch-derived
search object, the following demonstrates how to use it to perform a search of a game and get a

move.
TicTacToeGame ttt; // Initialize the game.
SgBlackWhite color = SG_BLACK; // Color to search the game for.
MySearchAlgorithm mySearch(ttt, color); // Create the search instance and pass the
// game and color to the constructor.
SgMove move = mySearch.GenerateMove(); // Get a move using GenerateMove().

Specific search algorithms may define more parameters that they take in their constructor, but
the basic steps are the same.

SgPlayer Interface
The SgPlayer interface is similarly brief.

Methods

SgMove GenerateMove()

Instructs the player to generate and return a legal move that can be played for the player’s color
in the current game position. If it cannot generate a legal move for whatever reason, it should
return SG_ZNULLMOVE.

const string& Name() const
Returns the name of the player given when it was constructed.

Example
Suppose MyPlayer inherits from SgPlayer. In general, for any SgPlayer-derived player object, the
following demonstrates how to use it to get a move to play in the current game.
TicTacToeGame ttt; // Initialize the game.
SgBlackWhite color = SG_BLACK; // Color of the player’s side.
MyPlayer myPlayer(ttt, color, “MyPlayerName”); // Create the player instance and pass
// the game, color, and name to the

// constructor.
SgMove move = myPlayer.GenerateMove(); // Get a move using GenerateMove().

Specific players may define more parameters that they take in their constructor, but the basic
steps are the same.

Extensions
There are several extensions that enhance Fuegito, including specific games, search algorithms,
players, tools and utilities.

11

Specific Games
Fuegito provides two sample game implementations of Tic Tac Toe and Clobber.

0 Tic Tac Toe
Tic Tac Toe (or Noughts and Crosses for the Brits)
|SgGrldBasedGame| provides a simple demonstration of a game that

can be implemented with the Fuegito framework
and used with the provided search algorithms. Its
simplicity makes the game a good testing ground
|TicTacToeGa me| | CIobberGamel for new search algorithms, as correct behavior can

be determined more easily.

FIGURE 3: INHERITANCE DIAGRAM FOR GAMES.

Clobber
Created in 2001 by Michael H. Albert,].P. Grossman and Richard Nowakowski[3], Clobber is a
relatively new game about which comparatively little is understood[3]. Fuegito provides an
opportunity to test the performance of a multitude of different search algorithms with Clobber
to see what, if any, primary strategies emerge in play.

Configuring ClobberGame
An instance of clobber can be configured for the number of rows and columns the game board
should have, as well as which side is to move first. Example:

int rows = 5;
int cols = 6;
SgBlackWhite toPlay = SG_WHITE;

ClobberGame clobber(rows, cols, toPlay);
Specific Search Algorithms
Fuegito provides several implementations of different search algorithms. There are the simple

searches that provide basic functionality, and then there are Alpha Beta and Monte Carlo
searches with some of their variations.

SgSearch
V 1 2

RandomSearchl |GreedySearch| |SafetySearch| |AIphaBetaSearch| |SimpIeMonteCarIoSearch|

| AmafMonteCarloSearch | | UcbMonteCarloSearch

FIGURE 4: SEARCH CLASSES INHERITANCE DIAGRAM.

The Simple Searches
Three simple 1-ply or 2-ply search algorithms are provided that use very basic logic to generate
amove. They can be used for simple players or as part of a more complex algorithm.

12

RandomSearch
A very basic ‘search’ method. Selects a move at random to play. Can be used as part of other
algorithms when a random move is needed. See SimpleMonteCarloSearch for a sample use case.

GreedySearch
GreedySearch is greedy in the sense that it tries to find a move that will give an immediate win
(performs a 1-ply win check).

The Algorithm

1. For each move in the current move list
a. Play the move
b. Record if won
c. Take back the move
d. Ifwon:
i. Return the move
ii. Else go to the next move
2. Ifno winning moves found, return a null move

SafetySearch
SafetySearch is still a greedy search except that now it is looking for the move that will prevent
an opponent from winning on the next turn (2-ply loss check).

The Algorithm

1. For each move in the current move list
a. Play the move
b. Do a GreedySearch for the opponent to see if they have a winning move
c. Take back the move
d. Ifthe opponent has a winning move:
i. Go to the next move
ii. Else return the move
2. If no safe moves found, then return a null move

AlphaBetaSearch

Alpha beta search is a classic game-tree search method that has been used in games for
decades[4]. Itis used extensively in games such as checkers and chess, and famously in the
Deep Blue chess-playing program[5]. Alpha beta is a more efficient way to compute the
minimax value of a game compared to the standard Minimax algorithm. It uses parameters
called alpha and beta to record the lower and upper bounds for the best value that the player
can hope to achieve. If it encounters a move that allows the player to do better than or equal to
beta, or for the opponent to do better than or equal to alpha, the search can stop exploring the
current branch. In the former case, the opponent can force a worse move on the player; in the
later, the player can avoid this line of play. This pruning of branches can significantly reduce the
number of nodes that needs to be searched in a game tree.

The Algorithm
Fuegito uses the Negamax! implementation of Alpha Beta search.

1 http://en.wikipedia.org/wiki/Negamax

13

1. Checkif game is over for current position. Ifitis, then return negative infinity.
2. Check if we have run out of depth. If so, call the evaluation function on the current
position and return the result.
Generate a list of all legal moves from the current position.
4. For each move in the list:
a. Play the move.
b. Recursively perform an alpha beta search of the new position but with alpha
and beta switched and negated. Also negate the returned result.
c. Take back the move.
d. Check if the value returned in the recursive search is better than seen so far. If it
is, record the move as the best move and the value as the best value.
e. Ifthe value is greater than or equal to beta, break out of the loop.
5. Return the best value and the best move.

w

Configuring AlphaBetaSearch
AlphaBetaSearch needs to be constructed with a game reference. All other values have default
arguments. The constructor looks like:

AlphaBetaSearch(
Game& game, // Reference to the game to be searched
SgBlackWhite color = SG_EMPTY, // The color of the side to search for.
// Default is the current side to play.
SgSearchHashTablex hash = 0, // Pointer to a hash table. Optional.

int depth = DEFAULT_DEPTH, // Maximum depth to search to.
double alpha = -DBL_INFINITY, // Alpha parameter.
double beta = DBL_INFINITY // Beta parameter.

)

SimpleMonteCarloSearch

The SimpleMonteCarloSearch algorithm is based on the fundamental principle of the Monte
Carlo method. As related to game playing, the basic idea is that when presented with a number
of moves, one can find the winning probability of each move with random simulations. A
simulation is nothing more than a random playout to the end of the game starting with one of
the moves, with the result recorded as a win or loss. After enough simulations are run on each
move, the probabilities will begin to converge and the algorithm picks the move with the highest
win rate.

Default Functionality

Default functionality is provided in the SimpleMonteCarloSearch base class. It selects moves to
be played in order so that each move gets an equal number of tries. During a playout moves are
selected completely at random. Win rate information is only tracked for the initial moves
generated in step 1 (the moves that are played first). The best move is picked by considering
only the win rate, nothing more. Please see SimpleMonteCarloSearch under Implementing Your
Own Search for details on how to provide custom functionality.

Configuring SimpleMonteCarloSearch
The constructor takes a game reference, and all other values have default options.

SimpleMonteCarloSearch(

Game& game, // Reference to the game to be searched.
SgBlackWhite color = SG_EMPTY, // Color of the side to search for.

// Default is side to play.
const MoveTimerx timer = 0, // Move timer set to the max search time.

14

// Optional.
int nuSimulations = 0, // Min number of simulations to run per
// move. Supersedes time setting.
MonteCarloSimulationPolicy* simPolicy = @ // Pointer to simulation policy to use.
// Default is simple random.
)

Variations
There are a number of variations to the basic Monte Carlo algorithm. The two examples that are
implemented by Fuegito are AMAF Monte Carlo search and UCB Monte Carlo search.

AmafMonteCarloSearch

AMAF stands for All-Moves-As-First[6]. Relating to the Monte Carlo algorithm, it is a strategy
that updates move statistics for moves played anytime during the playout, not just first moves.
This is called the AMAF update, in contrast to the standard update. The idea is that moves
played later in the game that resulted in a win could be good moves in general, and thus good
moves for the current position. This is counterintuitive at first; however, experiments do
confirm that this approach is beneficial in games like Go (the effect may be game-dependent,
however). The primary benefit is that many more samples are generated about a move for use
in the final selection policy; therefore the statistics should be more reliable.

Fuegito implements a version of the AMAF heuristic called alpha-AMAF. This variation does

both a standard update and an AMAF update, maintaining two tables of statistics about each

move. It then uses a parameter called alpha to combine the mean value of a move from the

standard update with the AMAF value of the move. The formula for computing the value is
alpha - AMAF _value + (1 — alpha) - standard_value

Where alpha takes values between 0 and 1. Note that alpha = 0 gives the standard algorithm
and alpha = 1 gives the AMAF algorithm.

Configuring AmafMonteCarloSearch
AmafMonteCarloSearch’s constructor takes identical arguments to SimpleMonteCarloSearch,
with the addition of the alpha parameter, which defaults to 1.
AmafMonteCarloSearch(
Game& game,
SgBlackWhite color = SG_EMPTY,
const MoveTimerx timer = 0,

int nuSimulations = 0,
float alpha =1 // Alpha parameter.

UcbMonteCarloSearch

Upper-Confidence-Bound or UCB Monte Carlo search uses an upper confidence bound selection
strategy for determining how to select a move to explore further[6]. The move that has been
explored the most overall is then selected as the best move to be returned. The move value
consists of the win rate (Wr) plus a variance term that gives a high-confidence upper bound on
the true move value. The variance term is computed as the margin of error (Me) plus an
adjustment (Adj), where the margin of error is based on a given critical value (Cv) that
corresponds to the desired confidence interval.

15

UCB = Wr + Me + Adj

_ wr(1-wr) . 1
Where Me = Cv ’—#plays ,and Adj = N

Configuring UcbMonteCarloSearch
UcbMonteCarloSearch’s constructor takes identical arguments to SimpleMonteCarloSearch, with
the addition of the critical value to use.

UcbMonteCarloSearch(

Game& game,

SgBlackWhite color = SG_EMPTY,

MoveTimerx timer = 0,

int nuSimulations = 0,

double criticalValue = UCB_CRITICAL_VALUE // Critical value to use for confidence
) // bound.

Specific Players

SgPlayer

AveragePIayerl ISea rchPIayerl I MixedMcAbPlayer

FIGURE 5: INHERITANCE DIAGRAM FOR PLAYERS.

AveragePlayer

AveragePlayer is a simple example of a player that uses multiple search techniques together to
find a move to play. It first tries to do a GreedySearch to find an immediate win for itself. Failing
that, it does a SafetySearch to try to avoid an immediate loss. If it still cannot find a move, it uses
RandomSearch to return a random move. This results in a playing strength that is well below
average in anything other than Tic Tac Toe, but do not tell it that. Perhaps in the future it will be
renamed WbAveragePlayer.

MixedMcAbPlayer

This is another example of a player that uses multiple search techniques. Specifically, this player
attempts to combine alpha beta and Monte Carlo search techniques into one strategy. It first
will run a Monte Carlo search, which also records the depth of the game tree, and plays the
returned move. On the next turn, it will check the depth of the tree against the depth setting for
its alpha beta search. If the depth is shallow enough to use alpha beta, it will do so. If not, it will
use Monte Carlo again. Therefore, the effect is that for the first moves of a game it plays like a
Monte Carlo player, and then switches to an alpha beta player in the end stage.

Configuring MixedMcAbPlayer

MixedMcAbPlayer takes a game reference, a color for its side, a pointer to a move timer, a
pointer to a hash table, the minimum number of simulations to run per move, the maximum
depth to search to with alpha beta, and alpha and beta values.

16

MixedMcAbPlayer(
const Game& game,
SgBlackWhite color,
const MoveTimerx timer = 0,
SgSearchHashTablex hash = 0,
int nuSimulations = DEFAULT_NU_SIMS,
int depth = DEFAULT_DEPTH,
double alpha = -DBL_INFINITY,
double beta = DBL_INFINITY

SearchPlayer

SearchPlayer is a generic player that can use any search given to it via a search factory. It
eliminates the need to create a separate player for each different search method. SearchPlayer
will simply use the given search factory to create an instance of that search type and then
generate and return a move using it.

Search Factories

Search factories are what allow the SearchPlayer to create the desired search type on the fly. It
has a MakeSearch() method which returns an instance of the desired type. Simple searches can
be added to SimpleSearchFactory, and more advanced searches can inherit from
SgSearchFactory or one of its subclasses.

| SearchPIayerI dses I SgSearchFactoryl

/N

SimpleSearchFactory AlphaBetaSearchFactory SimpleMonteCarloSearchFactory
Makes: Makes AlphaBetaSearch Makes SimpleMonteCarloSearch

RandomSearch
GreedySearch
SafetySearch

AmafMonteCarloSearchFactory UcbMonteCarloSearchFactory

Makes AmafMonteCarloSearch Makes UcbMonteCarloSearch

FIGURE 6: INHERITANCE DIAGRAM FOR SEARCH FACTORIES.

Modifying Search Parameters in Existing Factory Instances

One can modify an existing factory’s search-specific values using accessor methods (see below).
This allows changing the behavior of a search player using the search factory midgame. For
example, the Depth() accessor method can be called on AlphaBetaSearchFactory which returns a
reference to the depth setting, allowing it to be altered. See below for details.

SimpleSearchFactory

This type of factory can produce any basic search object that takes only the 4 standard
arguments: a game reference, color to search for, hash table pointer, and move timer pointer.
Its constructor takes a string representation of the search type to create. See how to extend this
class to create additional search types in Using and Extending Fuegito: Implementing Your Own
Search: Creating a Search Factory.

17

Accessor Methods

string& SearchType()
Returns a reference to the type of search being produced. Change this value to change what type
of search the SearchPlayer is using.

AlphaBetaSearchFactory
This makes an instance of AlphaBetaSearch. The constructor can be passed the desired search
depth along with alpha and beta values.

Accessor Methods

The following methods allow depth, alpha, and beta parameters to be read and changed.
int& Depth()

double& Alpha()

double& Beta()

SimpleMonteCarloSearchFactory
An instance of SimpleMonteCarloSearch is created with this factory. The constructor can be
passed the minimum number of simulations desired.

Accessor Methods
int& NuSimulations()

Allows the minimum number of simulations parameter to be read and changed.

In general, search factories function by passing the search-specific arguments to the constructor,
and then passing the factory instance to the SearchPlayer constructor. The search settings can
then be modified with accessor methods.

Configuring SearchPlayer

As with other players, a SearchPlayer must have a reference to the game, and the color for the
side to play for. For example, to configure an Alpha Beta SearchPlayer, assuming the game has
already been created first create the search factory:

int depth = 5;
AlphaBetaSearchFactory abFactory(depth);

Then create the SearchPlayer and pass in the factory instance by reference:

SearchPlayer player(game, SG_BLACK, &abFactory);
SgMove move = player.GenerateMove();

If you wanted to change the search depth to be deeper:

abFactory.Depth() = 9;
SgMove newMove = player.GenerateMove();

The new move is now generated by searching to a depth of 9.

Move Timer
A general implementation of a simple timer is provided with the SgMoveTimer class. It can be
used to control the time for an entire game, individual players, and how long searches can take.

18

Interface

SgMoveTimer(SgTimeVal time = 0)
Constructor. Accepts a time value in seconds to initialize the timer with. The timer is initially
stopped when first constructed.

void Set(SgTimeVal time)
Sets the timer for a given time in seconds.

void Start()
Starts the timer. The timer will begin running down the time. When time 0 is reached, it will

run into negative values showing how much overtime has elapsed.

void Stop()
Stops the timer.

SgTimeVal TimeLeft()
Returns the remaining time left on the timer in seconds. Negative values indicate amount of

overtime that has elapsed.

Configuring a Move Timer

For example, we can set the game time for a MixedMcAbPlayer which will limit how long it has
to make a move. For a 5-minute game, initialize the timer to 5 minutes, and then construct the
player passing in the timer by reference:

SgMoveTimer timer(5 % 60);
MixedMcAbPlayer player(game, color, &timer);

Start the timer and ask the player to generate a move:

timer.Start();
SgMove move = player.GenerateMove();

The player uses a percentage of the remaining game time to make its move. Stop the timer again
and print the time left to standard out:

timer.Stop();
cout << timer.GetTimeLeft() << '\n';

The result in this case is 210 seconds left (the player used 30% of the total time).

Hash Table

A Zobrist hash table[7] is implemented with SgHashTable, SgHashEntry, and ZobristNumbers
classes. This allows searches to store and lookup current or past results, allowing the ability to
recognize transpositions in move ordering and also improve move ordering—thus becoming
more efficient.

SgHashTable, SgHashEntry, SgSearchHashData classes
These classes are virtually identical to Fuego’s implementation of them. Please see Fuego
documentation[1] for more information about how these work.

19

ZobristNumbers

A global singleton class that returns a Zobrist number for a given index. Used in generating a
unique hash code for a game position. Currently there is a hard-coded limit of 1,500 on the
index value. From the Fuego documentation:

The hash index ranges from [0.MAX_HASH_INDEX-1]. For board games with black and
white pieces, MAX_HASH_INDEX needs to be bigger than twice the number of points on the
board. [It is] up to the client to map points to this range.

For 2-player games with more variety in piece types, the formula for computing the max hash
index is 2 - #piece_types - #board_points. So in TicTacToe, for example, there is only really one
piece type and it can be black or white. The board contains 9 points. So the max hash index
requiredis 2 -1+9 = 18. For a more complex game like Chess, there are 6 piece types and 64
board points giving a max index of 2 - 6 - 64 = 768.

Configuring and Using a Hash Table

Let us use the example of the SearchPlayer to show how to have it use a hash table to improve
alpha beta search. Assume we have already set up the search factory with the settings we want
there and we are ready to initialize our hash table. The hash table constructor takes the desired
maximum hash entries, the number of distinct piece types in the game, and an optional hash
statistics class (see SgHashStatistics). We use the default hash size and number of pieces that
are defined for Clobber:

int maxHash = CLOBBER_HASHSIZE;

int nuPieces = CLOBBER_NU_PIECES; // = 2

SgSearchHashTable hash(maxHash, nuPieces);

Then create the player as before, this time passing in the hash table by reference, and generate a
move:

SearchPlayer player(game, SG_BLACK, &abFactory, &timer, &hash);
SgMove move = player.GenerateMove();

The player now automatically utilizes the hash table with its search as long as the search is
programmed for it. Else, the table is ignored.

SgHashStatistics
Information can be gathered about the hash table using the SgHashStatistics struct. To use it,
simply pass in the statistics object by reference to the hash table on construction:

SgHashStatistics hashStats;
SgSearchHashTable hash(maxHash, nuPieces, &hashStats);

Use the hash as before; during use, SgHashStatistics records data about the hash performance.
To print the data, you can call PrintStats() directly or use the instance with an output stream:

hashStats.PrintStats(cout);
cout << hashStats;

What it records:

/*%x Number of collisions on store x/

20

int m_nuCollisions;

/*x Total number of stores attempted */
int m_nuStores;

/**x Number of successful stores *x/
int m_nuNewStores;

/%% Total number of lookups attempted x/
int m_nuLookups;

/**x Number of successful lookups *x/
int m_nuFound;

/*xx Records the entry size in memory of the hash x/
int m_entrySize;

/*x% The number of entries the hash contains x/
int m_hashSize;

Monte Carlo Simulation Policy

A simulation policy dictates the way moves will be played in the simulation of a Monte Carlo
search. For example, moves could be played completely randomly or game-specific knowledge
could be used to avoid blunders. Thus, a Monte Carlo search can be made to perform differently
given a different simulation policy.

Interface
SgBlackWhiteEmpty PlayGame(vector<SgMove>& playedMoves)
Performs a simulated playout to the end of the game. Calls GenerateMove() to generate moves

for the playout. Records the playout in the playedMoves vector reference. Returns the result of
the game as black, white, or empty in the case of a draw.

SgMove GenerateMove()
Method to generate and return a move for use in PlayGame(). This is where bias can be
introduced into the playout, or generated moves can be simple random.

Configuring and Using a Policy

The simulation policy constructor takes a reference to the game being played:
SimpleMonteCarloSimulationPolicy mySimPolicy(game);

Then the search constructor takes a reference to the simulation policy instance:

SimpleMonteCarloSearch mcSearch(game, color, &timer, nuSimulations,
&mySimPolicy);

The search can then be used as any other.

SgGridBasedGameRecord

This class sets up and manages the interaction of a game, two players, two search factories, and
two game timers. In short, everything needed to control a game between two players. This class
is used by the user interfaces in order to control the game behind-the-scenes.

21

Gtplnterface

GTP communicates via text commands. The GtpInterface class is meant to facilitate
communication between GTP and Fuegito by acting as a translator. For example, different
games have different move types and thus different text representations of their moves.
Subclasses of GtpInterface can implement methods to translate Fuegito values such as an
SgMove value for a specific game into a text representation for GTP.

Interface
GtpInterface(SgGridBasedGameRecordx gameRec)
Constructor. Takes a reference to a game record that the interface is interpreting for.

bool Play(const string& move)
Plays a string-encoded move. Formatting is game specific. Returns whether or not it was
successful.

bool Play(const string& color, const string& move)
Plays a string-encoded move with a string-encoded color. Returns as above.

virtual string MoveToString(SgMove move) const = @
Converts an SgMove move into a string-encoded move and returns it. Game dependent.

virtual SgMove StringToMove(const string& strMove) const = @
Converts a string-encoded move into an SgMove move and returns it. Game dependent.

string GenMoveWhite()
Generates a move for white that is played and returns it as a string,.

string GenMoveBlack()
Generates a move for black that is played and returns it as a string.

string GetState(SgGrid row, SgGrid col)
Gets the state of a board point given by (row, col) and returns the string representation.

Using and Extending Fuegito

Fuegito is designed to be added to and extended. There are several ways that this can be done.

Choices for Extending Fuegito
1. Implementa New Game
2. Implementing a New Search Algorithm
3. Implement a New Player
4. Add Extensions and Customize Searches

Implementing Your Own Game

Fuegito has been designed to make it very easy to implement a new game that will automatically
work with all existing Fuegito classes and default algorithms. Some design choices need to be
made first, and then it is a simple matter of plugging the game into the framework. Additionally,
there are game-specific improvements that could be implemented to enhance the performance
of the game-playing algorithms with the game.

22

Plugging it Into the Fuegito Framework

Fuegito defines an interface with the SgGame class for implementing games that all existing
player classes and search algorithms use for interaction. Creating a new game in Fuegito is as
easy as inheriting from the SgGame class and overriding the 15 pure virtual methods there.

Classes To Inherit From
Fuegito provides a primary abstract class SgGame and a more specialized abstract derived class
SgGridBasedGame to be inherited from for implementing a specific game.

SgGame

The SgGame class provides a general interface for implementing two-player games. The
majority of its methods are undefined, and it contains no data. SgGame provides a good starting
point for subclasses that implement types of games (grid game, card game, etc.) from which
further subclasses would refine into specific games.

SgGridBasedGame

Games that are based on a set of points arranged in a grid-like pattern of some kind (Go, Chess,
etc.) should inherit from the SgGridBasedGame class. This class provides predefined methods
and supporting data for implementing this type of game. See the documentation on this class for
more information about its features.

Methods to override
Concrete game classes must override pure-virtual methods depending on which class they
inherit from in order for the game to function within the framework.

SgGame

A concrete derived class of SgGame must override all the methods defined in the class’ interface
as documented in Details and Extensions. Caution: there are two versions of the Play() method,
and one of them has a default implementation. Thus, if the derived class does not override the
defined version, it will need to bring the other one into scope with a using declaration.

SgGridBasedGame

A concrete derived class of SgGridBasedGame must override all the same methods as for
inheriting from the SgGame class (see above) except for the following that SgGridBasedGame
provides implementations for already.

Exempt Methods
SgHashCode GetHashCode() const
void Print(ostream& out) const

void SwitchToPlay()

Please see SgGridBasedGame Interface under Details and Extensions for a list of accessor
methods that subclasses can use.

23

Implementing Your Own Search

To implement a new search algorithm in Fuegito, you can either write a new search class by
inheriting from SgSearch directly, or you can modify and extend one of the existing search
classes. Currently, only SimpleMonteCarloSearch can be extended from. After the search class is
created, you can create or modify a search factory for your search that will allow it to be used
with the SearchPlayer.

Classes to Inherit From

SgSearch

The SgSearch class provides an interface for implementing search algorithms that operate on
games where players make discrete moves that alter the game state. It also provides support for
using a hash table and move timer when conducting the search.

SimpleMonteCarloSearch

Inheriting from SimpleMonteCarloSearch allows a custom variation of the Monte Carlo
algorithm to be implemented. See Extensions and Details and How to do Improvements for
more details.

Methods to Override

Methods in SgSearch

SgMove GenerateMove()
This is the only method that needs to be overridden.

Accessor Methods in SgSearch
SgSearch provides accessor methods that allow subclasses to access some of the class resources
such as the hash table and move timer.

SgGame& State()
Returns a reference to the current board ‘state’ (really just a reference to a copy of the player’s

board instance).

SgSearchHashTablex Hash()
Returns a pointer to the hash table if there is one, else returns a null pointer.

const SgMoveTimerkx Timer()
Returns a pointer to the search timer if there is one, else returns a null pointer.

SgTimeVal GetTimeLeft()
Returns the time left in the search timer in seconds. If no search timer was given, returns 0.

SgBlackWhite OwnSide()
Returns the side of the search (the side that is being searched for) as SG_BLACK or SG_WHITE.

Methods in SimpleMonteCarloSearch

SimpleMonteCarloSearch provides default functionality for all its methods. Thus, derived
classes can override as many or as few as needed in order to effect the desired behavior. See
How to do Improvements for more details on implementing your own Monte Carlo variation.

24

Creating a Search Factory

To use your search with the SearchPlayer, you need to write a factory that will allow
SearchPlayer to make an instance of your search. This is also done through inheritance. In
general, every search algorithm needs a corresponding search factory that defines how to create
an instance of that algorithm.

Inheritance

To make a new search factory, you must inherit from the SearchFactory class. For extending
AlphaBeta and SimpleMonteCarloSearch, you can inherit from AlphaBetaFactory or
SimpleMonteCarloSearchFactory instead. SearchFactory declares a pure virtual factory method
called MakeSearch() that subclasses can override with the details of how to make their
particular search type.

Override MakeSearch() method

The MakeSearch() method must be overridden in the derived class. Its signature is

SgSearchx MakeSearch(SgGame& game, SgBlackWhite color,
SgSearchHashTablex hash,
const SgMoveTimerkx timer) const

The method takes a reference to a game object, a pointer to a hash table object, and a pointer to
amove timer object. The subclass should define how to return its matching search instance
created with new.

The hash pointer and move timer pointer can be ignored if your search does not use them.

Examples
Please see SearchFactory.h and .cpp to see how the provided search factories are done.

SimpleSearchFactory
Additional search types can be added to SimpleSearchFactory by adding if statements to the
MakeSearch() method like the following:

if (m_searchType == "my_search")
return new MySearch(game, color, hash, timer);

Use the appropriate arguments for your search.

Implementing Your Own Player
There are a couple of different options to choose from when creating your own player with

Fuegito. One way is to inherit from SgPlayer and have full control over how your player
behaves. The second way is to inherit from SearchPlayer and override the GetMoveTimer()
method in order to modify how it does time management.

Methods to Override

SgPlayer
The only method that needs to be overridden in SgPlayer is DerivedGenerateMove().

SgMove DerivedGenerateMove()

25

This method is called to get a move when GenerateMove() is called in the SgPlayer base class.
All this method has to do is return a valid legal move for the game being played, or return
SG_NULLMOVE if no valid moves remain. Use the base-class accessor methods to access the
current game, hash table, player color, time left, and game timer (see SgPlayer.h). The SgPlayer
base-class handles these resources for the derived classes automatically, including copying of
the external game so that the player’s state is always consistent.

SearchPlayer

SearchPlayer uses the GetMoveTimer() method to get a timer for its search method. Override
this method to control how the timer is set with regard to the external-game timer, which will
affect how long the SearchPlayer has to generate a move.

SgMoveTimerk GetMoveTimer() const

This method returns an SgMoveTimer pointer that SearchPlayer passes to the search factory to
make a search. This method can return a null pointer to signify that the search timer should not
be used. The timer should be set with the maximum time that the search should take to
generate a move. Note that not all searches use timers and may choose to ignore the timer.

Accessor Methods in SgPlayer

SgGame& Board()
Returns a reference to the player’s copy of the game.

SgBlackWhite Color() const
Returns the player’s color.

SgTimeVal GetTimeLeft() const
Returns the time left in seconds for the player’s game timer. If no timer was given, returns 0.

const SgMoveTimerx GameTimer() const
Returns a const pointer to the player’s game timer.

SgSearchHashTablex Hash() const
Returns a pointer to the player’s internal hash table.

Registering Your Class with the User Interfaces

The user interfaces in Fuegito rely on the SgGridBasedGameRecord class to setup a game with
players and searches. Therefore, to use a new class with the existing Uls, you need to register it
with SgGridBasedGameRecord. This process has been streamlined with Fuegito’s dynamic class
registration system.

What is Involved

Two things must done to register a class in Fuegito: a declaration macro needs to be placed in
the class’ private section, and the method for creating an instance of your class needs to be
placed in the .cpp file with the definition macro.

Declaration Macros
The appropriate macro needs to be placed in the class’ private section depending on what base
class your class inherits from.

SG_REGISTERED_GAME

26

SG_REGISTERED_PLAYER

SG_REGISTERED_SEARCHFACTORY

Definition Macros

The appropriate definition macro needs to be placed in your class’ .cpp file along with a function
body that returns an instance of your class via new. All macros take two arguments: the name of
your class as a string, and the exact typename of your class.

SG_REGISTER_GAME(“game_name”, GameType) {
return new GameType(rows, cols);

}

The game macro provides two arguments, rows and cols, to use when instantiating your game.

SG_REGISTER_PLAYER(“player_name”, PlayerType) {
return new PlayerType(xgame, color, factory, timer);

I

The player macro provides arguments game, color, factory, and timer to use.

SG_REGISTER_SEARCHFACTORY(“search_name”, SearchType) {
return new SearchType();

}

The search factory macro does not provide any arguments, so be sure to provide an appropriate
constructor.

In all cases any unneeded arguments may be ignored.

Example using Average Player

In AveragePlayer.h, AveragePlayer inherits from SgPlayer and defines its constructor to take a
const SgGame reference and a color. It calls the SgPlayer constructor with the game reference,
color, and its name. It also declares itself for registration with the SG_REGISTERED_PLAYER
macro.

class AveragePlayer : public SgPlayer {
SG_REGISTERED_PLAYER;

public:
AveragePlayer(const SgGame& game, SgBlackWhite color)
: SgPlayer(game, color, "AveragePlayer") {}

/¥ ve. %/
+;

In AveragePlayer.cpp, AveragePlayer overrides DerivedGenerateMove() and uses GreedySearch,
SafetySearch, and RandomSearch in order to try and generate a good move for itself. If none of
the searches find a valid move, the method returns SG_NULLMOVE.

SgMove DerivedGenerateMove() {

GreedySearch gSearch(Board(), Color());

SgMove move = gSearch.GenerateMove();

if (move == SG_NULLMOVE) {
SafetySearch sSearch(Board(), Color());
move = sSearch.GenerateMove();

}

if (move == SG_NULLMOVE) {
RandomSearch rSearch(Board(), Color());

27

move = rSearch.GenerateMove();

b

return move;
¥
Next, the SG_REGISTER_PLAYER macro is used to define how to instantiate an AveragePlayer

class:

SG_REGISTER_PLAYER("average", AveragePlayer) {
return new AveragePlayer(xgame, color);
¥

How to do Improvements

Fuegito allows you to effect various improvements in the way the search algorithms play. Two
examples that are described here are writing your own variation of the Monte Carlo algorithm,
and writing an evaluation function for Alpha Beta tree search.

Write your own variation of Monte Carlo

There are a number of variations of the basic Monte Carlo algorithm. With this in mind, the
basic algorithm was written following the template method. Implementing a specific variation is
supported through inheritance and overriding of virtual methods. In this way, derived classes of
SimpleMonteCarloSearch can provide their own specific functionality for various steps of the
basic algorithm.

The Algorithm Template
The steps of the algorithm template are listed here along with the method names. Almost every
step can be overridden in a derived class.

1) Getamove list from the current position. State().Generate()
2) Create data tables that keeps a record for each move of the number of times the move has
won when played, and the number of times in total the move has been played. Constructor()
3) Run simulations on the move list: PlayGames()
a) While there is time left or have not reached minimum number of simulations:
i) Select and play a move from the move list according to some selection strategy.
SelectMove()
ii) Do a playout on the resulting position to the end of the game according to a
simulation policy (i.e. random, biased). m_simPolicy->PlayGame()
(a) Moves in the playout are generated by GenerateRandomMove()
iii) Get the result of the playout (win, loss, or draw)
iv) Update the move statistics based on the result of the playout. UpdateData()
(a) Default behavior is to update the mean data. UpdateMeanData()
4) Select a best move according to some selection strategy (e.g. by picking the move with the
highest win rate from the move data table). GetBestMove()
a) Value for the move is determined by an evaluation policy. GetValue()
5) If for some reason the algorithm fails to pick a move, a null move is returned and must be
handled. HandleNullMove()
a) Default behavior is to return a random move.

Please see AmafMonteCarloSearch.h and UcbMonteCarloSearch.h for examples of how these
steps in the algorithm can be overridden.

28

Examples

AmafMonteCarloSearch and UcbMonteCarloSearch will be examined in more detail for examples
of how derived classes can alter the behavior of the base algorithm. Please see Details and
Extensions for details of how these algorithms work.

AmafMonteCarloSearch
AmafMonteCarloSearch both provides new data and overrides methods in defining its behavior.

Data Members
The class keeps an AMAF table and an alpha parameter as data for use in its algorithm.

m_amafTable
This is a second move data table that stores results from moves played anywhere in the playout.

m_alpha
This is the alpha parameter—the fraction of the AMAF value to use in the final move value.

Overridden Functions
The AmafMonteCarloSearch class overrides the following two functions with its
implementation.

UpdateData()
Now updates the AMAF table as well as also calling UpdateMeanData() to perform the standard
update. In this way it keeps the two data sets separate.

GetValue()
Returns a combined value from both the standard mean table and the AMAF table. The ratio
between the two values can be set with the alpha parameter.

UcbMonteCarloSearch
UcbMonteCarloSearch defines new constants, data, overridden functions, and new functions for
its implementation.

Constants

UCB_CRITICAL_VALUE
Default critical value to use in calculating the upper confidence bound.

Data Members

m_criticalValue
Critical value corresponding to a desired confidence interval to use when computing the upper
confidence bound.

29

Overridden Functions

SelectMove()
Returns the move with the highest upper confidence bound to use for running the simulation.

Calls GetBound().

GetBestMove()
Selects the best move to play by finding the one that has been played most often. This should
correspond to a high move value and a tight upper confidence bound.

New Functions

GetBound()
Computes the upper confidence bound of a given move value. Called by SelectMove().

Simulation Policy

You can write your own simulation policy to use with the Monte Carlo search classes. Simply
inherit from the SgMonteCarloSimulationPolicy class and override the PlayGame() and
GenerateMove() methods.

See the SimpleMonteCarloSimulationPolicy class for an example.

Write an Evaluation Function for Alpha Beta Search

When Alpha Beta search runs out of depth before it reaches the end of the game, it uses an
evaluation function to estimate the value of the position. The accuracy of this function can make
or break the effectiveness of alpha beta. Writing a good evaluation function for a particular
game is essential for alpha beta search to perform well on it.

Override Evaluate() Method in SgGame Class
The evaluation function is a member of the SgGame class because it is inherently game
dependent. This ensures that game-dependent code is kept with the game.

virtual double Evaluate() const
Evaluates the current game position using some fast method and returns the value. Positive

values being good for the current player and negative values being bad.

Building and Running Fuegito

There are two methods to communicate with Fuegito. They are the GTP interface, and
FuegitoGUI graphical user interface (coming soon). Please see the separate documentation for
more information about FuegitoGUI (to be provided). To use the GTP interface, the FuegitoMain
application must be compiled with the desired extensions.

Building Fuegito from Sourceforge
Using Subversion?, type the following into the terminal to checkout the latest version of the
Fuegito source code from the SourceForge repository:

2 http://svnbook.red-bean.com/

30

svn checkout svn://svn.code.sf.net/p/fuegito/code/trunk fuegito-code

Navigate to the fuegito-code directory in the terminal and type make to build the FuegitoMain
application with all the provided extensions. Ensure the makefile completes the build without
errors. There are no other steps to building the application.

To compile FuegitoMain with extensions other than those provided, the makefile needs to be
edited manually.

GTP

Fuegito supports the GTP protocol. GTP stands for Go Text Protocol and sets a standard for
communicating with game programs using text-based commands. The list of supported
commands is provided here, as well as how to configure Fuegito with command-line arguments.

Starting Fuegito from the Terminal
Fuegito can be started from the terminal with the following command:

fuegito -g <game_name> (where game_name is the name of the game to play)
Optional command-line arguments that can be passed:

-w <white_player_name> <optional white_search_method>

-b <black_player_name> <optional_black_search_method>

For example, to start Fuegito playing clobber with average player as white and search player as
black using alpha beta search:

fuegito -g clobber -w average -b search alphabeta
Once Fuegito is running, it is ready to accept commands.

Standard Commands
The following are standard GTP commands that Fuegito supports by default.

°* name

* boardsize

e clear_board

* play

* genmove

* reg_genmove
°* undo

* showboard

* main_time

* time_left

* list_.commands
* version

For an explanation of these commands please see the official GTP specification[2].

Fuegito Custom GTP Commands
Fuegito also implements some non-standard commands for custom functionality.

31

¢ list_games; list_players; list_searches
o Returns the list of currently registered games, players, or search factories.
* setgame <game_name>
o Sets the game to that given by game_name.
* setplayer <color> <player_name>
o Sets the player of the specified color to that given by player_name.
e setplayer <color> <player_name> <search_factory>
o If player_name accepts a search factory then additionally sets the search factory
of the specified color to that given by search_factory.
* setsearch <color> <search_factory>
o Ifthe current player of the specified color is a search player, sets the search
factory of the specified color to that given by search_factory.

* settings
o Lists currently loaded game, players, and search factories.
* redo

o Replay a move that has been taken back.
e getwinner

o Returns the winner of the game as “black”, “white”, or “none”.
¢ endofgame

o Returns true or false depending on if the game is over or not
e gettoplay

o Returns the current side to play as “black” or “white”.

e getwhite
o Returns the name of the white player or “none” if no white player set.
e getblack

o Returns the name of the black player or “none” if no black player set.

Adding Extra GTP Commands
#include "FuegitoEngine.h”

Custom functionality implemented by Fuegito extensions may require additional GTP
commands not already supported. Derived classes of SgGame, SgPlayer, and SearchFactory can
register their own GTP commands by first providing command handling methods and then
overriding the RegisterCommands() method in their base classes.

Command Handlers

Command handlers are simply member functions of any class that take a GtpCommand
reference and are registered with the GtpEngine. For example, in AlphaBetaSearchFactory,
there is a command handler to get and set the search depth:

void CmdDepth(GtpCommand& cmd);

Inside the command handler lies the logic behind handling the command. The command
reference cmd can be manipulated: it can be queried for arguments, and responses can be sent
back via the << operator. Please see the Fuego documentation[1] and the code for GtpEngine
and FuegitoEngine for more information and examples of how to write a command handler.

RegisterCommands() Method

There are two versions of the RegisterCommands() method depending on the base class.

32

In SgGame
void RegisterCommands(FuegitoEngine& e) const

FuegitoEngine calls this method automatically on games when they are loaded. Commands
should be registered inside this method by using the FuegitoEngine reference to call the
RegisterExtraCommand() method for each command. For example, suppose you wanted to
register a new command for your chess game class to see if a player was in check:

void ChessGame::

RegisterCommands(FuegitoEngine& e) const {
e.RegisterExtraCommand("check", &ChessGame::CmdCheck, this);
/* Any additional commands follow. */

}

ChessGame registers the command with the FuegitoEngine reference. It passes the name of the
command as a string, a reference to the command handler, and a self reference. Any number of
commands can be registered here.

In SgPlayer and SearchFactory
void RegisterCommands(const string& color, FuegitoEngine& e) const

The RegisterCommands() method for SgPlayer and SearchFactory classes comes with the
additional color parameter to ensure the command is registered for the right color. Thus, a
player or search factory such as AlphaBetaSearchFactory would register commands in this
fashion:
void AlphaBetaSearchFactory::
RegisterCommands(const string& color, FuegitoEngine& e) const {
e.RegisterExtraCommand(color, "depth", &AlphaBetaSearchFactory::CmdDepth, this);
/* Additional commands follow. */

}

GetSet() Method
In the GtpCmdUtil namespace, the GetSet() method is a generic implementation of a getter/setter
GTP command.

template<typename T>
void GetSet(T& param, GtpCommand& cmd)

The first argument is a reference to the class parameter that needs to be accessed, and the
second is the GtpCommand reference. When the command is given in a GTP session with no
arguments, the value of the parameter is returned. When the command is given with an
argument, the parameter is set to the value of that argument.

Using the Commands in GTP

Once extra commands are added and registered, the game, player, and/or search factory that
registered the commands needs to be loaded into the current GTP session for the commands to
be available. They will then appear when the user types list_commands. If another extension is
loaded in the previous one’s place, then the currently registered commands will be updated to
reflect this automatically.

33

References

[1] Miiller, Martin. Fuego. http://fuego.sourceforge.net/ (accessed August 20, 2012).

[2] Farneback, Gunnar. GTP - Go Text Protocol. http://www.lysator.liu.se/~gunnar/gtp/
(accessed August 20, 2012).

[3] Wolfe, David. Clobber. http://homepages.gac.edu/~wolfe/games/clobber/ (accessed August
8,2012).

[4] Russell, Stuart], and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd. Upper
Saddle River, New Jersey: Pearson Education, Inc., 2010.

[5] Hsu, Feng-hsiung. "IBM's Deep Blue Chess Grandmaster Chips." IEEE Micro, March-April
1999: 70-81.

[6] Helmbold, David P., and Aleatha Parker-Wood. "All-Moves-As-First Heuristics in Monte-
Carlo Go." Edited by de la Fuente Arabnia and Olivas. Proceedings of the 2009 International
Conference on Artificial Intelligence. Los Vegas, 2009. 605-610.

[7] Zobrist, Albert L. "A New Hashing Method with Application for Game Playing." Technical
Report #88, Computer Sciences Department, The University of Wisconsin, Madison, 1970.

34

Planned Additions to the Manual

Sample GTP Session
Contributing to Fuegito
From Fuegito to Fuego
* (Correspondence Between Main Classes in Both Programs
* Main Differences
o Game Class in Fuegito
o Extra Functionality in Fuego
= MCTS
= Multithreading
= Implements Go
= DF-PN Solver

List of Constants
Further Reading

35

