
CMPUT 396 – Hex Game 
 
Hex is played with 2 player, alternating 
moves. The goal is to connect your two sides 
together. 
 
Properties: 

- On any board, draws are not possible 
- On an NxN board, there exists a winning strategy for the first player 
- On an Nx(N+k) board (a non-square board), for the player with the shorter path 

across (whose sides are closer) there exists a winning strategy (whether they are 
the first or second player) 

- Solving arbitrary Hex states (i.e. who wins) is P-space complete 
 
History 
 
Piet Hein invented the game in 1942 (then called Polygon).  
 
It was independently re-invented in 1948 by mathematician John Nash at Princeton 
University. Nash explained the idea to David Gale, who introduced it to the Princeton 
game theory group together. Gale made a 14x14 board and left it in the Princeton 
common room. This was post-WWII when game theory was really popular (people 
thought it could help diffuse the Cold War). 
 
In 1950 Claude Shannon (Bell Labs) built analog machines, called Shannon Machines, 
to play Hex and birdcage (played a reasonably good game of Hex). Shannon’s machine 
was good for the beginning of the game, but not so much for tactical positions. 
 
In 1952 the Parker Brothers marketed a version, which they called “Hex” and the name 
stuck.  
 
Martin Gardner wrote about Hex in his Mathematical Games column in Scientific 
American in July 1957. 
 
In 2013, Pawlewicz, Hayward et al. solved 2 openings for 10x10 Hex. 
 
MoHex (Arneson, Hayward, Henderson, Huang, Pawlewicz et al) is the current strongest 
HexBot, stronger than most humans on sizes up to 13x13. 
 
Solving Hex 
 
How is this different from solving Tic-Tac-Toe? Do we need a new algorithm? Will 
alphabeta search still work?  



 
Tic-Tac-Toe States:  

- Number of states at most number of nodes in search tree: ≤ 9! = 362	880 
o ≤ because some terminal nodes not at max depth and transpositions 

- Can we do better?  
Number of states at most number of different positions: ≤ 3+ = 19683 

o 9 empty board positions with 3 possibilities in each board position (empty, 
X, O) 

- Can we do better? 
Many of these states are not reachable 
Many of these states are isomorphic 

o From root state only 3 non-iso moves, so 6500 nodes 
o Alphabeta search from the root examines 3025 nodes 

 
Hex States: 

- 3x3: ≤ 3+ = 19683 
- 6x6: ≤ 3./ = 1.6	 × 1023 
- 10x10: ≤ 3244 = 5	 × 1053 

o 10x10 number of states at most half full: 1.2	 × 105. 
- In comparison: to solve checkers there are about 1064 positions 
- Clearly, 10x10 Hex has too many states to search exhaustively 
- So far there have been two 10x10 opening Hex moves solved: 

o Center 
o B9 (2nd position on obtuse-corner-to-obtuse-corner diagonal) 

 
John Nash was excited when he came up with this game because Hex is a simple game 
and he could easily prove that whoever goes first can win. 
 
The first player always has at least many stones as the opponent and they decide the 
start of the game. 
 
If I don’t lose, I will win. (Someone has to lose and someone has to win.) 
 
John Nash’s First Player Can Win Proof: 
On an NxN board, there exists a winning strategy for the first player 
 
Proof by contradiction: 
 
I am P1. Assume that P2 has a winning strategy. For my first move, I will play anywhere 
and then forget about it. Then P2 plays. I will follow P2’s winning strategy. My extra stone 
from the beginning doesn’t hurt me, worst case I’ve already played there when I am 
following P2’s strategy and then I play anywhere and forget about it again. Therefore, P1 
has a winning strategy, which contracts our original assumption. 
 



Another explanation from Stack Exchange: 
 
The point is that in the game Hex, it never hurts to have an extra piece on the board. 
 
So, suppose there is a strategy for the second player, but you are stuck with being the 
first player. What should you do? 
 
Well, you can place a stone on the board, and then pretend in your own mind that it isn't 
there! In other words, you are imagining that the other player will now make the first move. 
In your mind, you are imagining that you are the second player now, and you can follow 
the winning strategy for the second player. 
 
The only time you could have trouble is if your winning strategy tells you to place a move 
at the position you are pretending is empty. Since it's not really empty, you can't really 
make a move there. But luckily, you have already moved there, so you can imagine that 
you are making a move there right now -- the stone is already there, so you can imagine 
that you are just putting it there now. But in reality you still need to make a move, so you 
can do the same thing you did at the beginning -- just place a stone at some random 
position, and then imagine that you didn't. 
 
The real state of the game is always just like your imagined state, except that there is an 
extra stone of yours on the board, which can't make things any worse. It limits the 
opponent's options, but if you have a winning strategy, it will work for any moves the 
opponent makes, so this isn't a problem either. 
 
The conclusion is that, if there were a strategy for the second player to win, then you 
could "steal" that strategy as outlined above to win even when you are the first player. 
This is a contradiction, because if there were really a winning strategy for the second 
player, then the first player would not be able to guarantee a win. Therefore, there is not 
in fact any strategy for the second player to win. 
 
(link:https://math.stackexchange.com/questions/856436/john-nashs-hex-
proof?fbclid=IwAR2CpGDDV-g9FefSaVSbTWwmnFNmk7khepUCXwwXfgTzH-
Iy1sXyDFx2oGI)  
 
Why Hex Cannot End In a Draw 
On any board, draws are not possible 
 
Take a board and put black on black’s two sides and 
white on white’s two sides. Put the rest of the stones 
on the board somewhere. Between any two cells 
that touch with different colours, draw a line segment 
between them. 
 



Observation about line segments:  
- We will always have black on the left of the 

line and white on the right 
- Path cannot end in the middle of the board 
- Path must end in one of the four corners 

(somewhere on the outside of the board) 
 
There are two places for the path to end up (starting 
from the top left corner): 

- Surrounding black (upper right), or 
- Surrounding white (lower left) 

 
If the path goes from top left to lower left, black must have a 
path through the game board. If the path goes from top left to 
bottom right, white must have a path through the game board. 
 
Nx(N+1) Hex: Longer-Side Win 
On an Nx(N+k) board (a non-square board), for the player with the shorter path across 
(whose sides are closer) there exists a winning strategy (whether they are the first or 
second player) 
 

For example, in this 7x6 board, 
break it into 2 triangles and label 
it so that the coordinates mirror 
each other. 
 
White has the shorter path, so 
there exists a winning strategy on 
this board for white, whether 
White is the first or second player. 
 

 
Say that white is P2. Black can move 
anywhere and then White should use a 
“pairing” strategy to “mirror” all of Black’s 
moves. In all cases, Black will lose. 
 
 
 
 
 
 

 
In 2013, the strongest computer Hex player used alphabeta search.  



 
What is a good algorithm? Correct, efficient, works in all cases 
 
A good algorithm grows at most polynomially with the input. For example, 𝑂(𝑛.) is a good 
algorithm, but 𝑂(2;) is not. 
 
NP-Complete Problem 
Solving arbitrary Hex states (i.e. who wins) is P-space complete 
 
You can prove things about Hex fairly easily. You can prove that it’s really hard to solve.  
 
NP-Complete: non-deterministic polynomial. Problems are yes or no questions. If the 
answer turns out to be yes there is a proof that the answer is yes that can’t be verified in 
polynomial time. You can show that solving your problem is at least as hard as every 
problem in NP-space. 
 
P-problems: can be solved in polynomial time 
 
PSPACE: the set of all decision problems that can be solved by a Turing machine using 
a polynomial amount of space. 
 
PSPACE-complete: if it can be solved using an amount of memory that is polynomial in 
the input length (polynomial space) and if every other problem that can be solved in 
polynomial space can be transformed to it in polynomial time. The problems that are 
PSPACE-complete can be thought of as the hardest problems in PSPACE because a 
solution to any one such problem could easily be used to solve any other problem in 
PSPACE. 
 
If you can solve a PSPACE problem in polynomial time, you can solve any PSPACE 
problem in polynomial time. (This is a million dollar question.) 
 
2x2 Go Board 
 
What is the minimax score for a board like this? White can’t move at some point because 
it will recreate a previous board position. 

 
Really, move 8 should not be allowed because it recreates the 
first board position, so at this point, black will win by one point 
(with stone 7). 
 

For Go, pass should always be the first move that you consider. This is because the 
opponent will also consider pass, which gives you the score for the game if it ends right 
then. After you have considered that, choose the best move. 
 



Solving 2x2 Go: tromp.github.io/java/go/twoxtwo.html 
- “The program below (download) solves the game of Go played on a 2x2 board 

using area rules and positional superko. It demonstrates the enormous importance 
of good move ordering in exhaustive alpha beta search. With the given ordering of 
passing first, only 1446 nodes are searched, to a depth of no more than 22. But 
trying passes after moves requires the search of as many as 19397529 nodes, to 
a depth of 58. Minimax, which doesn't depend on move ordering, takes over a 
week while searching a few trillion nodes.” 

 
Considering pass first searches far less nodes (and in contrast, not passing searches far 
more nodes).  
 
John Tromp says that the depth should be 22, but it’s 11 here because the tree is not 
complete (but it’s best for getting +1 score). 
 
Back to Hex… 
 
The search space for Hex is a lot smaller than for a lot of other games. Why? We can 
make massive amounts of pruning through virtual connections and inferior cells.  

 
From this diagram alone we know that white will win. How? 
 
We can see that white has a lot of potential paths to take, lots of 
options. We could carve out a board subsection and it still 
represents a game. 

 
The white stone is virtually connected to the white sides using 
various cells (look at the black paths from the white stone at the top). 
 
This shows a winning strategy from this position. 
 

What about on this 6x6 board?  
Black’s move in the centermost cell is a winning move. 
 
Where should white play to prevent black from immediately 
connecting to the top? 
- D2 or E2? Both lead to black still being able to win two 
different ways 
- E1? This is the intersection of the two moves above 

and it prevents black from making two winning paths, so it’s better. But, black can 
respond at C2 and still gain two connections to the top edge after that. 

 
Must-Play Analysis: Consider all your virtual connections. If you don’t play in these 
connections, you are allowing your opponent to block you there. 



Inferior cells: cells that can be easily ruled out or ignored in the search for a single 
winning move. The black dot in the middle of this black group represents an inferior cell. 

 
Imagine that there is a side-to-side white path that includes the black 
dot. This means that it must include the two cells above it, but those 
cells are already adjacent so even if it didn’t have the black dot, it still 
has a path. Therefore, it can be ignored. 

 
Why would black ever play there? It wouldn’t, that’s an awful move. We can use the same 
reasoning as before, you can already reach any other cell the black pieces could already 
reach. 
 
Conclusion: this cell is useless for both players. It’s a dead cell. 

 
Is A3 a dead cell? It doesn’t help black. If it’s not dead, there has 
to be a path from side-to-side where if you don’t have the cell, you 
no longer have the path. This also follows from the explanation 
above (look at a board edge as stones, and not a wall). If you 
place a stone in the dead zone, it doesn’t change the winner. 

 
Joinset: for a Hex position P and a player X, a joinset is a set of empty cells which, when 
X-coloured, joins X’s two sides (so for black, it’s a set of empty cells which when coloured 
black, join black’s two sides for the win). More simply, the set of cells that can connect 
two sides of the same colour. 
 
A joinset is minimal if it is not a proper subset of some other joinset. 
 
Algorithm to find dead cells: 

- Take all shortest paths across the board. 
o The path must be disconnected if you remove any stones from this path. 

- But wait, finding dead cells is NP-Complete. 
- You could also use pattern matching. 

 
So what should we do? Come up with ideas that are useful to solve Hex positions. 
 
Solving 6x6 Go is an open problem (a 5x5 solution gave someone a PhD). We can solve 
6x6 with what we know so far. 
 
How Hayward Solved 7x7 Hex 
This is in the Puzzling Hex Primer paper. 
 
Captured cells were important. A cell is captured if for every opponent move in the set, 
the player has a response to prevent any winning strategy from occurring. This allows us 
to prune these cells. 



Three common captured set patterns: 

 
 
Is there any point in white playing in the small black dots of the earlier diagrams? Not 
really… unless black is not smart enough to respond. In other words, if white had a 
winning move, it wouldn’t be there. So, we can assume that there are black cells to 
prevent searching/moving there. 
 
This is all we need to create a Hex solver! 
 
Permanently Inferior Cells: whenever you see the pattern on the left (black cells lining 
up in the left and bottom making an L-shape), you can add black stones as on the right. 
You can play in the center as the black player, but it doesn’t really matter because it will 
become dead if someone plays at the top right corner. 

 
 
 
 
 
 


