
CMPUT 396 – Nim Game 
 

Start with k piles of stones. 
 
On a move, a player selects a pile and removes any number of stones from 
that pile. 
 
The last player to move wins. 
 

In this game, how do we win? 
 
Algorithm tips: 

- Use recursion 
- Avoid code duplication (e.g. negamax) 
- Avoid recomputation (e.g. memoization) 

 
Dynamic Programming (memoization): tackle subproblems, write down intermediate 
results so you don’t recompute it later (recursion can be helpful in such solutions) 
 
Memoization Example: 

 
 
How long does it take to compute fib(40) with no memoization? Just count the number of 
function calls to estimate. 

- Recurrence Relation 
o Number of calls for fib(10): 1 + # for fib(9) + # for fib(8) 

- Number of calls for fib(2): 1 + # for fib(1) (1, base case) + # for fib(0) (1, base case) 
 
So far for Tic-Tac-Toe we could solve it with simple minimax, alphabeta, and negamax. 
Does this work with nim? 
 
 
 



Consider the game state search tree for nim (10 10 10 10 10).  
 
What moves can we make? We can take 1-10 from any of the 5 piles. So, the root state 
has 50 children, 50*49 grandchildren… 
At depth 10, this tree already has 50*49*48*47*…*41 > 3 e16 nodes. This tree is too big 
to solve in a reasonable amount of time. What else can we do? 
 
We can exploit isomorphisms and memoize.  

iso = same, morph = shape 
 
As with Tic-Tac-Toe, we can use a transposition table to generate only one node per 
equivalence class (set of isomorphic states). 
 
e.g. nim (1 2 3) 

- From (1 2 3), some possible moves: 012 013 023 112 113 122 … 
o There are some isomorphic states here: 102 120 012 (only need one) 
o In the tree, like in tic-tac-toe, 2 paths can lead to different nodes that are the 

same isomorphic state (look at transposition table example in ttt notes). 
- From (0 1 3) (we’ve chosen a move), some possible moves: 003 012 011 010 …  

 
Solving nim (1 3 3): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



In Nim, it is easier to work from the bottom-up because 
we know what the losing state is (board is empty and it 
is your turn to play, this is the terminal node.) It’s a game 
that gets simpler as the game progresses (same with 
Chess, because pieces are taken off the board). 
 
We can build up possibilities from there. Look under 
“Finished:”, we can build up from (0 0 0) to figure out 
which states are winning and which states are losing. 
Note that we are only considering optimal play (so some 
states like 002 and 003 don’t make sense). 
 

The search space for Nim is narrow at the bottom so it is more productive to use a bottom-
up approach and always take the best move.  
 
Game Space Search 
 
DAG vs Tree:  

- DAG = directed acyclic graph 
- Better to use DAG than tree because in a directed acyclic graph different paths 

from the root can lead to the same child (this is the case in TTT and Nim). 
 
Pro: fewer nodes in DAG than tree, so less time to examine all the nodes 
 
Con: DAG code usually more complicated than tree code, especially if information from 
child is backed up to parent (in a tree each child has one parent and in a DAG each child 
can possibly have many parents). 
 
State Equivalence: we can compress the search space by group nodes into equivalence 
classes. 
 e.g. Nim, put isomorphic states in same class 
     (1 2 3) = (1 3 2) = (2 1 3) = (2 3 1) = (3 1 2) = (3 2 1) 
 

 
 
 
 
 
 
 
 
 
 
 



Nim(2 2 2) DAG: 

 
- Root node is (2 2 2), the start of the game 
- All arcs for from right to left, for example, 222 has two children: 122 and 022 
- Exercise (solution at the end): write X under each losing state, draw arrow on each 

winning edge (winning edges go to losing edges) 
 
Algorithm 
 
Memoization is also called dynamic programming. Instead of recomputing, we write 
values when we compute them the first time so we can look them up later. Memoization 
works if states can be ordered so that the value of a state depends only on values of 
previous states. 
 
Dynamic Programming Nim Algorithm: 

- Order states by number of stones so each move results in a state with fewer stones 
- In order, from fewest stones to most, compute the win/loss value for each state 

 
Three definitions: 

- Any position with no moves is losing. 
- A position is losing is every move from that position is to a winning position. 
- A position is winning is it is not losing, i.e. if some move from that position is to a 

losing position. 
 
If we don’t have a move to a state where the opponent loses, every move we make is to 
a state where the opponent will win. All the states we can reach from a losing state must 
be a winning state. For example, 001 (W), 002 (W), 003 (W) from 000 (L). All the states 
we can reach from our winning states are losing states. 

 



Correctness?  
Because we consider states by increasing number of stones, if the value of a state is not 
yet defined by the time we get to it, it must be the case that every move from that state is 
to a state whose value we have already seen, and (since we would have set the value 
otherwise) all those values must be wins, so the value of the undefined state must be a 
loss. 
 

 
 
Trace dpsolve(3 3 3): 

4 stones: 013 T 
   112 T     
   022 F  023 122 222 223 T 
 
 
 
 
 
 
 
 
 

From Python code: 
# for each losing state, find winning states that reach it 
      for j in range(len(self.wins) - 1): # nothing reaches last state 
        if not self.wins[j]: # loss, so find all psns that reach j 
          cj = self.crd(j) 
          #print(cj,'loses, find all wins that reach this') 
          for x in range(len(cj)): 
            cjcopy = deepcopy(cj) 
            for t in range(1+cj[x], 1+self.dim[x]): 
              cjcopy[x] = t 
              pjc = self.psn(cjcopy) 
              self.wins[pjc], self.winmove[pjc] = True, j 
 
Runtime: 

- Each state causes an update at most one time 
- Number of states at most product_pilesizes 
- Each update takes time at most sum_pilesizez 
- Total time O(product_pilesizes * sum_pilesizes) 

à if value is false, all reachable states must be a win (every other state is still false) 



O(n2) à runtime of n increases on average by some factor times n 
C * n2: C * 1002 à C * 2002 = 2002/1002 = 4/1 = 4 times as much 

- So if n doubles, runtime is 4 times greater 
 
O(n): C * 100 à C * 200 = 200/100 = 2, increases by factor of 2 
O(n3): C * 1003 à C * 2003 = 2003/1003 = 8, increases by factor of 8 
 
Checkers:  

- When does dynamic programming work well? When the number of positions (or 
equivalence classes) eventually drops to a manageable number. 

- 1994 (1996) – Schaeffer’s check program Chinook becomes the first bot to be a 
world champion of some game 

- 2007: Schaeffer’s program solves checkers (a draw) 
- Two versions of checkers: 

o Freestyle: whoever goes first can make any move 
o 3-move: first move must be one of three moves (three opening moves 

chosen to make game fairly even) 
§ Schaeffer’s group figured out for these three moves who will win with 

optimal play 
- Key idea to solving checkers: endgame databases (dynamic programming on 

steroids) 
o “For this position of my last king and your last king, who will win” (2 vs. 1, 3 

vs. 1, 3 vs. 2, etc.) 
- “Using retrograde analysis, subsets of a game with a small number of pieces on 

the board can be exhaustively enumerated to compute which positions are wins, 
losses or draws. Whenever a search reaches a database position, instead of 
using an inexact heuristic evaluation function, the exact value of the position can 
be retrieved.” 

 
Nim Formula: 
 
Theorem: a nim position is losing if an only if the xorsum of the pile sizes is 0 
 
e.g. xorsum(1 2 3) = 01 ^ 10 ^ 11 = 00, so (1 2 3) is losing 
e.g. xorsum(3 5 3) = 011 ^ 101 ^ 111 = 001, so (3 5 7) is winning 
 
How to find winning move? From (3 5 7) can move to: 

- (0 5 7), xorsum 010, not losing position, so this is not a winning move 
- (1 5 7), xorsum 011, not losing position, so this is not a winning move 
- (2 5 7), xorsum 000, losing position, so yes, winning move 

 
What other winning moves are there from (3 5 7) (do as exercise)? 
 
 



Proof: 

 
 
All winning moves (bignim.py): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Nim formula example: 

 
 
Combinatorial Game Theory: 
 
Nim is one of the games whose math gave rise to combinatorial game theory. A 
combinatorial game is a game where whoever cannot move loses (variant: whoever 
cannot move wins). The math of combinatorial game theory is essential to solving Go 
endgame puzzles. 
 
Some CGT games include: 

- Amazons 
- Breakthrough 
- Clobber 
- Dots and boxes 

 
 
 
 
 
 
 



Solution to Nim DAG: 

 
 
Solution to exercise on last page: 

 


