
CMPUT 396 – Tic-Tac-Toe Game 
 
Recall minimax:  

- For a game tree, we find the root minimax from leaf values 
- With minimax we can always determine the score and can use a bottom-up 

approach 
 
Why use minimax? It gives the best worst-case score (that is, the best score against all 
possible opponent strategies). 
 
Why use minimax for 2-player search? 1) they are zero sum games (if something good 
happens to me it’s bad for you) 2) we can maximize or minimize this score 
 
Alpha-beta search is a minimax search with the obvious shortcuts taken. 
 
Let’s pick a game and use minimax to solve arbitrary states, or rather find the minimax 
value. We need a game with a relatively small state space, like tic-tac-toe. 
 
Tic Tac Toe 
 
Theoretical best of both players in tic-tac-toe?  

- It should be a tie 
- Can you prove it? 

 
Tic-tac-toe dates back to ~2 CE with Ovid’s (poet) book Ars Amatoria III, lines 365-369: 
 

There is another game divided into as many parts 
as there are months in the year; 

A small board has three pieces on either side, 
the winner must get all the pieces in a straight line. 

 
Estimate for number of nodes in Tic-Tac-Toe search space: absolute maximum is 9!, but 
in reality it will be much lower because when you get to a win you don’t have to keep 
looking (at minimum, a game will be five moves). 
 
Why use minimax? Because it gives the best worst-case answers. In theory, it is bottom-
up while taking the obvious cutoffs (alpha-beta). 
 
Negamax 
 
Negamax is a variation of minimax search that relies on the zero-sum property of a two-
player game.  
 
Good coding practice is to avoid code duplication. Negamax reduces code duplication.  



One area where minimax suffers is that it has two cases: one where P1 moves and one 
where P2 moves (we maximize one and minimize the other). However, we don’t really 
need two cases. In negamax, we compute the minimax value for the player-to-move so 
we only have one case: 𝑠𝑐𝑜𝑟𝑒_𝑓𝑜𝑟_𝑝2(𝑛𝑜𝑑𝑒) = 𝑛𝑒𝑔(𝑠𝑐𝑜𝑟𝑒_𝑓𝑜𝑟_𝑝1(𝑛𝑜𝑑𝑒)). At each node, 
we select the move that maximizes the negation of the score of the children: 
𝑛𝑒𝑔(𝑠𝑐𝑜𝑟𝑒(𝑐ℎ𝑖𝑙𝑑)). 
 
This algorithm relies on the fact that max(𝑎, 𝑏) = −min	(−𝑎,−𝑏) to simplify the 
implementation of the minimax algorithm. The value of a position to player A in such a 
game is the negation of the value to player B. Thus, the player-to-move looks for a move 
that maximizes the negation of the value resulting from the move: this successor position 
must by definition have been valued by the opponent. The reasoning of the previous 
sentence works regardless of whether A or B is on move. This means that a single 
procedure can be used to value both positions. This is a coding simplification over 
minimax, which requires that A selects the move with the maximum-valued successor 
while B selects the move with the minimum-valued successor. So with negamax we don’t 
care who is A and who is B, the algorithm works the same regardless. 
 
Warning: When using negamax, make sure that the leaf scores are for the player-to-
move (minimax assumes all node scores are for the first player). To convert leaf scores 
in a minimax tree to equivalent leaf scores in a negamax tree: negate leaf scores whose 
distance-to-root is odd. The leaf scores whose distance-to-root is even do not need to be 
changed because their player-to-move is max. 
 
Base case:  

- If we win, return 1 
- If there are no legal moves, return 0 
- The best score so far: could be infinity, but we say -1 because the worst possible 

outcome is a loss and I know I can achieve a loss so we set it as -1 but obviously 
hope to do better 

 

 
Note that with negamax we always maximize the score at every level (𝑚𝑎𝑥(−𝑎,−𝑏)). 
 
 
 
 
 



simple/ttt/ttt_classic.py à ab_neg(), pseudocode 
for cell in legal_moves: 
 Set value of cell for the player-to-move 

Call negamax recursively from position we have just updated 
 Two arguments: position, player-to-move 
Gives us a negamax score 
Current best we can do is so_far 
 Is -negamax score better than this 
Erase cell (to reset for for loop) 

Return best score so far 
 
Minimax example, negamax format (negative scores of minimax): 

 
 
Tic-Tac-Toe Example Trees 

 
 
 
 
 
 
 
 
 
 
 



Part of game tree: 
Start with the current 
position, make all the 
possible next moves, 
and do that over and 
over until there is a 
winner or a draw for 
that board. 
 
 
 
 
 
 
 

 
Part of minimax tree: 

Determine minimax 
values for each 
node in the game 
tree. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

max(-1,-(-1),-1, -1) = 1 max(-1,-1,-1, -1) = -1 max(-(-1),0,0,0) = 1 



Proof tree: 
Prove that a certain move for a certain 
position is a winning move by working 
through the tree. 
 
These can also give you an indication 
of how hard it will be to solve. 
 
 
 
 
 
 
 
 
 
 
 

Simple Tic-Tac-Toe negamax code: 
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Transpositions 
The board can represent the same position if it is rotated 
or reflected. In our negamax implementation (without 
checking for isomorphic moves), we hit all of these 
transpositions. We need to check: have we seen this 
board position before? We need a table with all positions 
we’ve seen before to take symmetry into account. As in 
the right, we should collapse all positions that were the 
same into one node. 
 

- The Tic-Tac-Toe search space is not a tree 
because it has undirected cycles 

- The Tic-Tac-Toe search space is a directed-acyclic 
graph (no directed cycles because it always moves 
top to bottom) 

- Different move sequences that yield that same position are called transpositions 
 
Pruning Tic-Tac-Toe Game Trees 
 
How many Tic-Tac-Toe states need to be examined to find the minimax value of the 
corner opening move? 8! Or far fewer than 8! 
 
Far fewer than 8! Because nodes can be pruned. 
 
Win detection: in child minimax for loop, abort if winning child found (prune remaining 
siblings). 

- Solve Tic-Tac-Toe with 129 988 nodes (when we check for early wins) 
- If we don’t check for early wins, more like 740 170. 

 
We could also check for a forced move. Does the opponent have any move where they 
have two in a row and we can block? If yes, we shouldn’t consider other positions. 
 
We can add some additional conditions to our base case: 

- Did someone win? 
- Can I win on this move? Go there 
- Can my opponent win on the next move? Block there 
- Can I conclude that no one can win (every possible 3-in-a-row is blocked)? You 

can draw early 
 

With a transposition table we should check: 
1) Have we seen this exact position before (used different move sequence to get 

there)? 
2) Have we seen a reflected or rotated position before? 

Save the minimax values for positions we’ve seen before so we don’t need to recalculate. 



Tic-Tac-Toe Search Space Size 
 
How big is the tic-tac-toe search space? 
 Root, 9 children, 9*8 grandchildren, 9*8*7 great-grandchildren 
 
Total number of nodes < 1 + 9 + 9*8 + 9*8*7 + … + 9*8*7*6*5*4*3*2*1 = 986 410 
 
Level 0 0 nodes   1 (starting position) 
Level 1 9 nodes   9!/8! = 9 
Level 2 9*8 nodes   9!/7! = 9*8 
Level 3 9*8*7 nodes   9!/6! = 9*8*7 
… 
Level 9 9! nodes at leaf level 9!/1! = 9*8*7*6*5*4*3*2*1 
 
Why should it be less than that? Because some terminal nodes may not be at max depth, 
because a win is a leaf node and because of transpositions. 
 
If we treat the search space as a tree, ignoring transpositions so we allow a position in 
multiple nodes, then the above number is a reasonable estimate. 
 
How much of a space reduction do we get if we allow each position to appear in at most 
one node? 

- Number of possible positions:  
o 9 cells, 3 possibilities for each (corner, edge, center) = 39 = 19 683 
o Each of the board positions can be empty – X – O, which we represent as 

0 – 1 – 2 (so we can represent each board position by a 9-digit base 3 
number) 

 
Good news:  

- Many of these positions are not reachable 
- Many of these states are isomorphic (can be transformed to be the same) 

o From root state: only 3 non-isomorphic moves, so expect 6500 nodes 
o Alpha-beta search from root examines 3025 non-isomorphic states 

 
Tic-Tac-Toe Board Representation Example 

 



Minimax pruning example (min/max format): 

 
 
Alpha-beta search (negamax format) 

 
 
 
 



Alpha-beta Trace Example:  

 
 
Search Enhancements 
 
When you want to solve a game, start with minimax. Then make improvements like cutoffs 
with alpha-beta and minimizing code similarity with negamax. 
 
Always start with the vanilla version of the algorithm, it won’t be super fast at first. Ask 
yourself, how can we make this better? 

- Move ordering: to maximize pruning, consider children in order from strongest to 
weakest (child strength is not known a priori but we can guess with a heuristic) 

- Threat-search: check for wins or lose-threats (forced moves) first 
o Win-threat: if player has a winning move, make it 
o Lose-threat: if opponent has next-move-win, player must block at that cell, 

all other moves lose and can be pruned 
- Alpha-beta revisions for Tic-Tac-Toe 

o Initialize with -1 rather than -infinity (because a loss is the worst case 
already, don’t need to make it super big) 



o Search stops when win/loss found 
o Before starting search, order children so that win-threats precede lose-

threats precede the rest of the moves 
§ If I can win, I want to do that. If not, I should make sure I won’t lose 

on the opponent’s next turn by blocking them with my move. Then I 
can consider other moves. 

 
Heuristics with limited depth alpha-beta search is the basis of many strong chess 
programs. 


