
CMPUT 396 – 2-Player Games 
 
In a puzzle, one player makes all the moves so to solve a puzzle, you need to search the 
state space for the best possible outcome. 
 
In 3+ player games, there could be possible coalitions. For example, in poker often 
players collectively gang up on the weakest player to take all their money (this player is 
called “the fish”). 
 
But what about 2-player games like chess, Go, hex? How should we solve them? 
 
History of solving chess:  

- 1770: Turk Automaton 
o Fake chess-playing machine, appeared to be a machine that could play 

chess and beat strong players 
o In fact it was an illusion where a chess master would hide inside and operate 

the machine. 
- 1913: Zermelo (German Mathematician), “On the application of counting theory to 

the theory of chess” 
o Can you actually prove anything about chess given its rules? 
o Zermelo proved that with finite moves and no repetition the game will result 

in either a win for opponent A, a win for opponent B, or a draw 
- 1947: WWII code breaking moved from being done by hand to by machine and the 

Enigma cryptography machine was solved 
o Americans were using computers to create thermonuclear devices 
o Claude Shannon from Bell Labs had conversations with Alan Turing where 

they discussed chess-playing algorithms. Through these conversations, 
they came up with minimax. 

 
Adversarial Search 
 
The simplest multi-player games have the following characteristics: 

- 2 players (what position are we in currently, whose turn is it to move) 
- Alternating turns 
- Zero-sum (only one winner; something good for you is bad for me) 
- Deterministic (no chance) 

 
Some games like this include Go, tic-tac-toe, checkers, chess (although chess can 
actually end in a draw), etc. 
 
Adversarial search: searching a 2-player game tree which captures all the possible 
moves in the game, where each move is represented in terms of loss and gain for one of 
the players. 
 



Consider a player about to move. In order to pick the best move, you need to know how 
the opponent will respond. Always assume that they will take the optimal move, that they 
are perfect. 
 
Why assume that your opponent is perfect? 

- If you make this assumption and find a winning strategy you know you can win 
against all possible opponent strategies (because you already proved you could 
beat the best opponent strategy). 

- Downside? Maybe more work? But it is worth it to know that it’s the best we can 
do. 

 
If you assume that your opponent always takes the optimal move and you can make a 
provable winning move (a move than wins against all possible opponent strategies), you 
have solved that position. 
 
What does it mean to solve a game? 

- You can predict the outcome (win, lose, draw) from any position, assuming that 
both players play perfectly. 

 
Some definitions: 

- State: current position of board and player to move 
- Reachable state: any state reachable by sequence of legal moves 
- Strategy for a player: a function that, for any reachable state, returns a legal move 
 

In a 2-player game, to solve a state is to find a strategy with best worst-case performance, 
i.e. that guarantees the best possible score over all possible opponent strategies (so, 
assuming the opponent always makes a best possible move). 
 
The initial move for any such strategy can be found by minimax search, where the score 
is the player-to-move’s minimax score.  
 
Play that follows a minimax strategy is called perfect play. 
 
Schaeffer (solved checkers): 

- His checkers program played Tinsky, but Tinsky won and later, before they could 
play again Tinsky died 

- Schaeffer had to prove that he could beat him still, so he started his project to solve 
checkers (which he did) 

 
Minimax 
 
To find a minimax value, explore the game-state tree in any order that finds values of 
children before the value of the node. 
 



Minimax algorithm: search space to find root state minimax value, 2 cases (min and max) 

 
Minimax Example: 

 



Pruning Game Trees 
 
When solving a state, it usually not necessary to examine the whole tree. Once a winning 
move is found, you can ignore the remaining moves. This is the motivation behind alpha-
beta search.  

 

 
 
 
 
 
 
 
 
 



Alpha-beta Search 
 
Alpha-beta search is minimax search with alpha-beta pruning. It stops completely 
evaluating a move when at least one possibility has been found that proves the move to 
be worse than a previously examined move. Nodes can be pruned when beta <= alpha. 
 
Alpha: value of the best P1 option so far on the path from the current node to the root 
Beta: value of the best P2 option so far on the path from the current node to the root 
Minimax can be used as a solver where the leaf scores must be true scores and you must 
able to reach all leaf nodes in reasonable time. It can also be used as a heuristic player 
so if you can find a fast heuristic you can use it on all leaves at a fixed depth (e.g. a simple 
chess player. 
 
Alpha: minimum score that maximizing player is assured of 
 
Beta: maximum score that the minimizing player is assured of 
 
Initially, alpha is −∞ and beta is +∞ (both players start with the worst possible score). 
When the max score of the minimizing player (“beta”) is less than min score of maximizing 
player (“alpha”), 𝑏𝑒𝑡𝑎 ≤ 𝑎𝑙𝑝ℎ𝑎, so the maximizing player does not need to consider further 
descendants of the node (so we can “cutoff” the rest of the descendants). 


