
CMPUT 396 – Sliding Tile Puzzle 
 
Sliding Tile Puzzle 
2x2 Sliding Tile States 

 
 
Exactly half of the states are solvable, the other half are not. In the case of 2x2 puzzles, 
I can solve it if I start with a configuration where there is a cycle. If not, I can’t. 
 
Solvable? 
We call a state solvable if it can be transformed into the row-by-row sorted state (with 
blank last). For a puzzle with at least two each rows and columns for any fixed final state, 
exactly half of the states can be transformed into the final state. 
 
A parity check tells us whether an arbitrary state is solvable. 

 
1) Look at a puzzle as a line of numbers (row 1, row 2, row 3, … row n) 
2) For each number in the line, count how many inversions there are (how many 

numbers before it are bigger than it) 
3) If the grid width is odd, then the number of inversions in a solvable situation is 

even. 



4) If the grid width is even, and the blank is on an even row counting from the 
bottom (second-last, fourth-last etc), then the number of inversions in a solvable 
situation is odd. 

5) If the grid width is even, and the blank is on an odd row counting from the bottom 
(last, third-last, fifth-last etc) then the number of inversions in a solvable situation 
is even. 

 
 
Search sliding tile space 

 
 
Exhaustive Search 
Random walk is so much slower than BFS and DFS that we will ignore it for this problem. 
Both BFS and DFS are exhaustive so they will solve the problem, however it may take 
too long. 
 
Estimate state space: for any (r,c) problem, there are (r x c)! states. 
 
State space adjacency graph has 2 components: 

- Solvable states, (rc)!/2 nodes 
- Unsolvable states, (rc)!/2 nodes 



 
So starting from a fixed state, in the worst case, we examine (rc)!/2 nodes. 

 
Solving Slide Tile with BFS 
In maze traversal, we considered adjacency graphs of cells and used BFS to traverse this 
graph. The associated graph in a sliding tile puzzle is as follows: 

- Each node in a graph is a sliding tile state 
- Two nodes are adjacent if there is a single-slide between the states 
- With this graph, we use BFS as before 

 
To implement this in Python we can use a dictionary of the parents so each time we see 
a new state, we add it to the dictionary so that we know we have seen a state iff it is in 
the dictionary. 
 
Runtime Analysis 
For a 3x3 search space: !!

#
= 181440 

We divide by 2 here because half of the total states are solvable, half are not. 
 
How can we use this to estimate a 2x5 runtime? 
 
Let’s say that we have 181440 iterations (of our algorithm’s graph) in 2.2 sec at 82600 
iterations/sec. 
 
For BFS with a graph of N nodes and E edges, the runtime is O(N+E). 
 
Average degree (number of neighbours) in a 3x3 search space? 

- 4 corners with 2 neighbours 
- 4 sides with 3 neighbours 



- 1 middle with 4 neighbours 
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So the number of edges in a 3x3 tile search space equals 9! ∗ 2.67. 
 
Average degree for 2x5 search space? 

- 6 non-corners with 3 neighbours 
- 4 corners with 2 neighbours  

 
Average degree: 3 ∗ 4
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So we expect the worst case (no solution runtime for a 2x5 tile search) to take about 
.5∗#.4
#.46

= 9.75	𝑡𝑖𝑚𝑒𝑠	𝑎𝑠	𝑙𝑜𝑛𝑔. 
 
Therefore, 1814400 iterations in 21.5 seconds at 84400 iterations/sec (which is close to 
what was expected). 
 
How about to solve a 4x4 puzzle? 
To get a lower bound, we compare the sizes of the search spaces. A 4x4 search space 
is 16 ∗ 15 ∗ 14 ∗ 13 ∗ 12 ∗ 11 = 𝑅	𝑡𝑖𝑚𝑒𝑠	𝑡ℎ𝑒	𝑠𝑖𝑧𝑒	𝑜𝑓	2𝑥5	𝑠𝑒𝑎𝑟𝑐ℎ	𝑠𝑝𝑎𝑐𝑒. So we expect a 4x4 
no-solution runtime at least 𝑅 ∗ 21.5	𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 𝑎𝑏𝑜𝑢𝑡	2.3	𝑦𝑒𝑎𝑟𝑠 
 
BFS takes too long to solve a 4x4 puzzle so we need a faster algorithm. 
 
Why use BFS? To get the shortest solution. 
DFS will ignore many moves at each stage. 
 
How can we solve a 4x4 puzzle in a reasonable amount of time? Is there a way to tell 
which moves are more promising than other moves? 
 
Knowledge: information about the particular problem, could be proved of heuristic. 
 
Heuristic: suggestion, idea, not making provable claim about it 
 e.g. in early 2000s, computer Go programs were full of heuristics, but almost 
nothing was proved. 
 
Special Purpose Algorithms: these are good for solving your problem, but you can’t 
use it anywhere else. A general algorithm helps you solve more problems. 



 
Special purpose algorithms do exist for the sliding tile puzzle. One such algorithm: 

1. In sorted order (left to right, row by row) move next element into position while 
avoiding elements already placed. 

2. Last 2 elements of each row need special technique 
3. Last 2 rows need special technique 
4. Final 2x2 grid (last 2 rows, last 2 columns) rotate into solution if and only if original 

state is solvable 
 
Heuristic search is a guided search. A heuristic function is used to decide which node 
of the search tree to explore next. 
 
Dijkstra’s Algorithm (single-source shortest path on weighted graphs): given a 
starting point, this algorithm will find all shortest paths from that starting point. At each 
node, we know the shortest path to get to that node so far. 
 Input: graph/digraph with non-negative edge/arc weights and a start node S 
 Output: for each node v, the shortest path from S to V 
 
In a weighted graph each edge has a weight. 

 
Algorithm: 
Let the node we start at be S, the distance of node Y be the distance from S to Y. 

1. Mark all nodes as unvisited. Create a set of all the unvisited nodes called the 
unvisited set. 

2. Assign to every node a tentative distance value: zero for S and infinity for all other 
nodes. Set S as current. 

3. For the current node, C, consider all of its unvisited neighbors and calculate their 
tentative distances through C. Compare the newly calculated tentative distance to 
the current assigned value and assign the smaller one.  

a. For example, if the current node A is marked with a distance of 6, and the 
edge connecting it with a neighbor B has length 2, then the distance to B 
through A will be 6 + 2 = 8. If B was previously marked with a distance 
greater than 8 then change it to 8. Otherwise, keep the current value. 



4. When we are done considering all of the unvisited neighbors of C, mark the C as 
visited and remove it from the unvisited set. A visited node will never be checked 
again. 

5. If the destination node has been marked visited (when planning a route between 
two specific nodes) or if the smallest tentative distance among the nodes in the 
unvisited set is infinity (when planning a complete traversal; occurs when there is 
no connection between the initial node and remaining unvisited nodes), then stop. 
The algorithm has finished. 

6. Otherwise, select the unvisited node that is marked with the smallest tentative 
distance, set it as the new "current node", and go back to step 3. 

 
Dijkstra’s SSSP Algorithm: 

 
 
Parent: in our final solution, we can look back at the parent nodes saved to “build” the 
shortest path we have found. 
 
Fringe: set of nodes that have a neighbour among the nodes whose distances we know. 
A greedy algorithm is an algorithmic paradigm that follows the problem solving heuristic 
of making the locally optimal choice at each stage. This algorithm is greedy because at 
each step we remove the fringe node with the minimum distance so far. It is optimal on 
graphs (or acyclic digraphs) with non-negative edge weights: distance-so-far of fringe 
node with minimum distance-so-far in length of shortest path from start to that node. 
 
A* Algorithm 
A*: uses heuristic to estimate remaining distance to target. If the heuristic underestimates 
the cost (always less than or equal to the cost), then A* finds the shortest path and usually 
considers less nodes than Dijkstra’s. In this algorithm, we have some extra information 
that allows us to process certain nodes before others. 
 
Add start node, each node has parent/cost  

- Cost: current minimum distance to that node (0 for the start node) 



- Heuristic (target, v): a heuristic can be the Euclidean distance to the goal. If a 
heuristic must be good estimate, you cannot guarantee that you have the 
shortest/lowest cost path. 

 
Why is it coded like “if next not in done”? You don’t want to process a node that has 
already been added to the path. 
 
We have three sets of nodes:  

- Done: finished processing, assigned path and weight 
- Fringe: currently processing 
- Nodes we haven’t seen (will be in neighbours of the nodes we are looking at) 

 
Cost[current] + wt(current, next) 

- Cost of current node + weight of an edge 
- If next is not in cost (we don’t have the distance for it) 
- Or if new_cost < cost[next]: don’t bother updating if it’s not better 

 
Algorithm: 

 
 
Arad to Bucharest 
Heuristic: straight line distance to B, Euclidean distance to the end node (this is easy to 
compute with latitude/longitude coordinates) 

PQ = priority queue 

Get lowest cost node 

Look at neighbours of current node 

f g h 

f = g + h 
f = 75 + 374 = 449 
 

g = 75 
 
weight 
 

h = 374 
heuristic 
 



- This means that we’ve calculated the distance to Bucharest for each location and 
put that as a value for each node. 

 
Initialize all nodes to infinity, 
start (Arad) to 0 
- Put its priority (366, 
heuristic + weight) 
- What’s the first node we 
process? Arad, the only one 
- Arad has three neighbours 
so we update their costs (S, 
T, Z) 
o New cost = shortest path 
(heuristic) + edge weight 
o Now we see cost, heuristic, 
and priority (sum of those two 
prior values) 
o Pick the one with the lowest 
priority value, etc. (see trace 
below) 
 
 
 
 
 



Now let’s apply A* to a sliding tile puzzle. To do this, we need a heuristic. If we want to 
find the shortest solution, we need to make sure we use A* with a heuristic that doesn’t 
overestimate the true path. 
 
We can start with a usual state space adjacency graph: 

- Node: sliding tile state (position) 
- Edge: a pair of states, can single-slide from one to another 
- Cost of a path: sum of number of edges from start (unit-cost weights) 
- Choice of heuristic function: 

o Number of misplaced tiles 
o Sum, over all tiles, of Manhattan distance (taxicab distance) from current to 

final location 
§ Manhattan distance: The sum of the horizontal and vertical 

distances between points on a grid 
 
Each of these heuristic functions is always less/equal to the number of moves to solve so 
with A* each yields the shortest solution. 
 
Example: 4 3 2, 1 5 0 

- 4: 1 
- 3: 1 
- 2: 1 
- 1: 1 
- 5: 0 
- Sum: 4 

Is an underestimate? Yes 
Are all tiles only going to move once? No 
 
Humans solving sliding tile 
Humans and computers often solve problems differently. 
 
We can solve sliding tile puzzles by decomposition. We can solve a 2x3 sliding tile puzzle 
by reducing it to a 2x2 puzzle. Consider any 2x3 puzzle with tiles 1-5. 

- Claim A: we can always get to position with numbers in left column correct (1, 4) 
- Claim B: after getting to that position, original problem solvable if and only if solving 

remaining 2x2 problem (while leaving left column in place) solvable 
 
 
 



Claim A Proof:  

 
 
Claim B Proof:  

- Each tile move preserves the solvability condition 
o E.g. assume number of rows is odd 

§ Solvability condition: number of inversions is even 
§ Each tile move preserves parity of number of inversions 

• Moving a tile left or right does not change number of 
inversions, and therefore doesn’t change its parity of number 
of inversions 

• Moving a tile up or down does change number of inversions. 
The tile moves past an even number of other tiles (which is 
the width of the board minus 1). So, the number of inversions 
changed by ±1,±1,±1,… ,±1, an even number of times. So 
it’s still even, even if the number of inversions change, the 
parity did not. 

- So original 2x3 position solvable if and only if position with 1,4 in place solvable 
- Two cases: 

o Case 1: clockwise cyclic order of other three tiles is (2, 3, 5) 
§ Subproblem solvable: in order, just need to be cycled into place 
§ Original position is solvable: because the subproblem is solvable 
§ Original position had even number of inversions: because odd 

number of columns so if it was solvable this has to be true 
o Case 2: clockwise cyclic order of other three tiles is (2, 5, 3) 



§ Sub problem unsolvable: out of order, can never switch inversion of 
5 and 3 

§ Original position has odd number of inversions (so unsolvable): why? 


