1. Label each node with its minimax (not negamax) value. The leafs are done for you. Root is a max node.

The minimax value of a game state is (circle one)

- a) the minimum score the player can achieve, over all possible opponent strategies
- b) the maximum score the player can achieve, over all possible opponent strategies
- c) the minimum score the player can achieve against a typical maximizing opponent
- d) the maximum score the player can achieve against a typical minimizing opponent
- Minimax is often implemented with enhancements, because (circle one)
- a) bottom-up algorithms tend to be inefficient
- b) the minimax definition does not consider opponent modelling
- c) the value can often be found without examining the whole search space
- d) the search space is often too small for minimax to handle properly
- 2. Draw an unreachable tic-tac-toe state here:

It is unreachable because _

In tic-tac-toe there are 9 possible 1st moves, each with 8 possible 2nd moves, and so on, so the number of different games

is at most (give number or expression) _______. When solving tic-tac-toe, using a ______ avoids unneeded recomputation: an efficient empty-board tic-tac-toe minimax explores only about (circle one)

30000	10000	3000	1000	500	different positions.
-------	-------	------	------	-----	----------------------

first name 2018 CMPUT 396	quiz 3	last name 40 min	no calculators	4 գւ	id# iestions×6 marks e	each page 2
3. The White Doctor	opening in t	he game of				
was solved in 2007	by a group of	of scientists at	the University of			
<pre>def foo(a,b,c): if a==0 and by sofar = -1 for aa in rang sofar = max #if sofar== for bb in rang sofar = max #if sofar== for cc in rang sofar = max #if sofar== return sofar</pre>	ge(0,a): (sofar, -fo 1: return 1 ge(0,b): (sofar, -fo 1: return 1 ge(0,c): (sofar, -fo	o(aa,b,c)) o(a,bb,c))				

On the recursion tree for the call foo(1,1,1) above, label each node with parameters to the left and return value to the right. The root is done for you.

4. The function foo in the previous question uses algorithm (circle one)

minimax		alphabeta		negamax	n	egamax-alphabeta		
to return the minimax value for an arbitrary (circle one)								
3-pile nim p	position	tic-tac-toe positio	on 3x	3 sliding tile pos	sition	3x3 Go position .		
The number of nodes in the recursion tree for foo(3,3,3) is closest to (circle one)								
12	24 1	20 240	1200	2400	12000	24000 .		
If foo is changed by uncommenting the three comments, then the number of nodes in the recursion tree for foo(3,3,3) is closest to (circle one)								
24000	12000	2400	1200	240	120	24 12.		