
cmput396 fall 2018 asn4 solutions

2. (a) def foo(a,b,c):

if a==0 and b==0 and c==0: return 1

ttl = 1

for aa in range(0,a): ttl += foo(aa,b,c)

for bb in range(0,b): ttl += foo(a,bb,c)

for cc in range(0,c): ttl += foo(a,b,cc)

return ttl

for j in range(5): print(foo(j,j,j))

j 0 1 2 3 4

calls(j,j,j) 1 16 550 24136 1176106

(b) j 0 1 2 3 4 5 6 7 8 9

mod’d foo(j,j,j) calls 1 6 24 106 480 2186 9968 45466 207392 946026

(c) Always equal. There are two possible scores, and we initialize at -1, so if we cutoff

it means we can reach score 1. This is what happens in the current code.

(d) j 0 1 2 3 4 5 6 7 8 9

solveall nim(j,j,j) updates 0 10 31 88 151 262 439 736 955 1246

3. Proof. Let f(n) = n. For all integers n ≥ 1, 1/n ≤ n, so r(n) = 3n+1/n ≤ 3n+n = 4n.

So, we have found an integer k (1) and a constant c (4) so that r(n) ≤ cf(n), so r(n) is

in O(f(n)).

4. c103 = 10 so c = .01 so r(20) = .01(203) = .01(8000) = 80.



5. False. Here is a proof.

The runtime grows at least as fast as the number of win updates, which as you can see

from the chart below is growing faster than the number of positions. But this is just

circumstantial evidence, it’s not a proof.

By looking at the algorithm, we see that the number of win updates is equal to the

number of edges in the state space from losing positions. So, how many losing positions

are there?

Recall the nim formula: a position loses if and only if the exclusive-or sum of the

binary representation of the pile sizes is identically 0. Using this, I wrote a program to

compute the number of losing positions, as shown in the table below. Then I looked

up the sequence in the on-line encyclopedia of integer sequences, and there is a closed

form: f(n) = (2 + (−1)n + 3n)/4, or about 3n/4 for large n.

(As expected, this number is close to 3n/4. Each pile has either 0, 1, or 2 stones, so

a position loses if and only if the number of piles with exactly 1 stone is even and the

number of piles with exactly 2 stones is also even. Over all possible positions, about

half the positions will satisfy each property, and these events are (almost) independent,

and 1/2 times 1/2 equals 1/4.)

Finally, the number of updates from each losing position is roughly n, because from

each losing position we can add a stone to each of the n piles that does not already have

2 stones.

So the number of updates will be roughly n ∗ 3n/4. So, is there some constant c such

that the number of updates will be (eventually) at most c ∗ 3n ? No.

piles of 2 1 2 3 4 5 6 7 8 9

positions 3 9 27 81 243 729 2187 6561 19683

win updates 2 6 24 84 310 1098 3836 13128 44298

losing positions 1 3 7 21 61 183 547 1641 4921


