solving 6×6 hex

search space?

- \bullet assume hex game ends with board .5 full
- 6×6 : about 4 e 14 such states
- proof tree, 8 black moves, 7 white moves, how many leaves?
 35 * 34 * 32 * 30 * 28 * 26 * 24
 20530298880 ≈ 2 e 11
- how to solve quickly?
- weak joins, strong joins, mustplay regions (blocksets)

- winning black 1st-player strategy: top-btm weak join (connection)
- winning black 2nd-player strategy: top-btm safe join
- **carrier** of a join is its cell set
- weak join: move, optionally with winning safe join(s)
- safe join: ≥ 2 weak joins s.t. interaction of carriers is empty
- each winning strategy: and-or expression (and-or tree)

solving 6×6 hex

- run join-search algorithm to find small safe joins (bridge, 4-3-2, etc)
- play centremost main diagonal
- blockset size small (depends on join-search alg'm)
- e.g. with bridge, 4-3-2, and 5 other patterns, blockset size 1: see following slides
- resulting search tree small

white mustplay region (blockset)formed from intersection of3 previous black threatsets

white mustplay region (blockset) formed from 7 previous black threatsets

try move d3

white mustplay region (blockset) formed from 6 previous black threatsets

quickest win