rock paper scissors

> play 5 games with your neighbour minimax value of 5 -game rps ? $\quad-5$ (why?)

Rose payoff matrix Colin action
Rose action rock paper scissors

rock	0	-1	1
paper	1	0	-1
scissors	-1	1	0

matrix game 2 -player, simultaneous-move, 0 -sum
0-sum definition:
for each terminal state, P1-score + P2-score $=0$

another matrix game: how is this 0-sum ?

Rose payoff matrix Colin action

Rose action
a
b
$\begin{array}{llll}\text { c } & -1 & -2 & -3\end{array}$
whever Rose wins x, Colin wins $-x$

Colin payoff matrix Colin action
Rose action
a b c
a
b
c
a
b
c
-3
2

3
fill in the
missing
entries

stochastic algorithm

stochastic defn: with action(s) taken from a probability distribution e.g. stochastic strategy S: play (rck, ppr, scr) with probabilities (.5, .3, .2)

- assume C plays S : what is R's best replying strategy T ?
- easy question: best 1-choice T? analysis below

```
rck: expected R-winrate: .5 * 0 + .3 *-1 + .2 * 1 = -.1
ppr: expected R-winrate: .5 * 1 + .3 * 0 + .2 *-1 = .3 <-- best
scr: expected R-winrate: .5 *-1 + .3 * 1 + .2 * 0 = -. 2
```

- harder question: best stochastic T ?
theorem in a matrix game, every fixed stochastic strategy
has a best counter-strategy that is 1-choice
to find a best stochastic response (counter-strategy),
it suffices to consider only 1 -choice responses woo hoo :)
- $m \times n$ matrix gave has only
m 1-choice strategies (for R)
n 1-choice strategies (for C)
continue: best R-response to C-strat (rck .5, ppr .3, scr .2) ?
answer
- assume R plays (rock, paper, scissors) with probability (r, p, s)

$$
\text { so } 0 \leq r, p, s \leq 1 \quad r+p+s=1
$$

- by theorem, sufficient to consider 1-choice strategies for R
- already seen: strats $(1,0,0),(0,1,0),(0,0,1)$ R-exp-payoffs $-.1, .3,-.2$,
an R-best stochastic response is 1 -choice strat $(0,1,0)$

ttt vs rps

$$
\begin{array}{cc}
\qquad \begin{array}{c}
\text { 2-player }
\end{array} \text { 2-player } \\
\text { alternate turn } & \text { simultaneous move } \\
\text { deterministic algorithms } & \text { stochastic algorithms } \\
\text { analysis: minimax } & \text { analysis: minimax? }
\end{array}
$$

how to find matrix game minimax strategy?

warmup: 2×2 matrix game

find matrix game value

- our story so far ...
- matrix game value a.k.a. Von Neumann equilibrium
- Von Neumann's theorem: every matrix game has a value ...
- today: how to use linear programming to find that value
- lecture assumes you have read and understood

Game Theory, A Playful Intro (Kent/Devos), chapter 5.1
matrix game Kent/Devos GT:playful intro, Ch. 5


```
now consider R plays mixed strategy x * r1 + y * r2,
    where x,y are probabilities (0 <= x,y <= 1 x + y = 1)
```

 case 1) \(\mathrm{x} * \mathrm{r} 1+\mathrm{y} * \mathrm{r} 2\) versus c 1 ?
 case 2) $\mathrm{x} * \mathrm{r} 1+\mathrm{y} * \mathrm{r} 2$ versus c 2 ?
case 1) R exp. payoff $x * 2+y * 1$
case 2) R exp. payoff $x *-1+y * 2$

Rose wants minimax stoch. strat

- minimax should be called maximin
- for a fixed stoch. R-strat (x, y), a C-best response?

R-exp-payoff-minimizing (over all 1-choice C-strats)
here $\min \{2 \mathrm{x}+\mathrm{y},-\mathrm{x}+2 \mathrm{y}\}$
-R wants max (over all R -strats) best C-response (R-exp-payoff minimizing)

- sometimes called R's best guaranteed expected payoff
- here: max (over $(x, y)) \min \{2 x+y,-x+2 y\}$

```
max (over (x,y)): min{ 2x + y, -x + 2y }
```

maximize z such that

$$
\begin{aligned}
& z \leq 2 x+y \\
& z \leq-x+2 y \\
& 0 \leq x, y \leq 1 \\
& x+y=1
\end{aligned}
$$

how to solve 2-dimensional linear program

- try boundary of (x, y) -feasible region
- $(0,0): z=0$
- $(0,1): z=\min \{2 x+y=1,-x+2 y=2\}=1$
- $(1,0): z=\min \{2 x+y=2,-x+2 y=-1\}=-1$
- $(0,1)$ to $(1,0)$ along $x+y=1$?
- try $x+y=1$ and $2 x+y=-x+2 y$? see next page
- $(1 / 4,3 / 4): z=\min \{2 x+y=5 / 4,-x+2 y=5 / 4\}=5 / 4$
- so R's minimax strat is $(1 / 4,3 / 4)$

$$
\begin{aligned}
2 x+y & =-x+2 y \\
3 x & =y \\
x+y & =1 \\
x+3 x & =1 \\
4 x & =1 \\
x, y & =1 / 4,3 / 4
\end{aligned}
$$

2 x 2 matrix game conclusion

- R has a minimax strat, expected payoff 5/4
- exercise: show C has a minimax strat $(3 / 4,1 / 4)$, exp.-R-payoff $5 / 4$
- so R can play so that R has exp payoff at least $5 / 4$
- so C can play so that R has exp payoff at most $5 / 4$
- so $5 / 4$ is called the (minimax) value of this game
- this pair of minimax strats called Von Neumann equilibrium
every matrix game has a VN equilibrium
to solve n-dimensional linear program, use LP-solver
- evaluate at https://sagecell.sagemath.org/

$$
\begin{aligned}
& \text { p = MixedIntegerLinearProgram() } \\
& \text { v = p.new_variable(real=True, nonnegative=False) } \\
& x, y, z=v[' x '], ~ v[' y '], ~ v[' z '] \\
& \text { p.set_objective(z) } \\
& \text { p.add_constraint (} z<=2 * x+y \text {) } \\
& \text { p.add_constraint (} z<=-x+2 * y \text {) } \\
& \text { p.add_constraint (} \mathrm{x}+\mathrm{y}==1 \text {) } \\
& \text { p.add_constraint (} \mathrm{x}>=0 \text {) } \\
& \text { p.add_constraint (y >= 0) } \\
& \text { p.solve() } \\
& \text { p.get_values (} \mathrm{z}, \mathrm{x}, \mathrm{y} \text {) }
\end{aligned}
$$

you should get this output $[1.25,0.25,0.75]$

- this tells us that R is guaranteed expected payoff 1.25 when she plays row 1 with probability .25 and row 2 with probability .75
- check this: her expected payoff against 1-choice strat column 1? column 2?
- can we verify that this is her maximum guaranteed expected payoff?
- yes: Von Neumann's theorem, which tells us that there will be a mixed strategy for Colin with guaranteed expected payoff (owing to Rose) at most 1.25
- let's use the same method as above to find an optimizing mixed strategy for Colin
- Colin wants to minimize his guaranteed expected payoff
- for any mixed Colin-strat (s, t) we assume Rose will play the maximizing 1-choice R strat
- Colin wants to minimize $\max \{2 \mathrm{~s}-\mathrm{t}, \mathrm{s}+2 \mathrm{t}\}$
- reformulate this as a maximization problem (for SageMath)
- Colin wants to maximize min\{ $-2 \mathrm{~s}+\mathrm{t},-\mathrm{s}-2 \mathrm{t}\}$
maximize z such that

$$
\begin{gathered}
z \leq-2 s+t \\
z \leq-s-2 t \\
0 \leq s, t \leq 1 \\
s+t=1
\end{gathered}
$$

- evaluate this program at https://sagecell.sagemath.org/

$$
\begin{aligned}
& \text { p = MixedIntegerLinearProgram() } \\
& \text { v = p.new_variable(real=True, nonnegative=False) } \\
& s, t, z=v[' s '], v[' t '], v[' z '] \\
& \text { p.set_objective(z) } \\
& \text { p.add_constraint (z <= -2*s + t) } \\
& \text { p.add_constraint(} \mathrm{z}<=-\mathrm{s}-2 * \mathrm{t} \text {) } \\
& \text { p.add_constraint(s + t == 1) } \\
& \text { p.add_constraint(s >= 0) } \\
& \text { p.add_constraint(t >= 0) } \\
& \text { p.solve() } \\
& \text { p.get_values(z,s,t) }
\end{aligned}
$$

- you should get this output
$[-1.25,0.75,0.25]$
- this tells us that C is guaranteed expected payoff -1.25 when he plays col 1 with prob
.75 and col 2 with prob .25
- check this: his expected payoff against 1-choice strat row 1 ? row 2 ?
- can we verify that this is his guaranteed expected payoff?
- yes, because R has a guaranteed expected payoff exactly the negative of this amount
- we have found, and verified, that value for this game is 1.25
- in expected value, by following her mixed (.25, .75) strategy, R is guaranteed to win at least this amount against any 1-choice col strat
- in expected value, by following his mixed $(.75, .25)$ strategy, C is guaranteed to lose at most this amount against any 1-choice row strat
- another example

		C	
	1	2	1
R	1	0	2
	3	1	0

- R wants to maximize her guaranteed expected payoff
- for any mixed R -strat ($\mathrm{a}, \mathrm{b}, \mathrm{c}$), assume C plays a minimizing 1 -choice C -strat
- R wants to maximize $\min \{\mathrm{a}+\mathrm{b}+3 \mathrm{c}, 2 \mathrm{a}+\mathrm{c}, \mathrm{a}+2 \mathrm{~b}\}$
- R wants to
maximize z such that

$$
\begin{aligned}
& z \leq a+b+3 c \\
& z \leq 2 a+c \\
& z \leq a+2 b \\
& 0 \leq a, b, c \leq 1 \\
& a+b+c=1
\end{aligned}
$$

- use sagemath to find
- value of this matrix game
- a minimax strategy for R
- a minimax strategy for C
- another example

\[

\]

