alpha-beta minimax pruning

- two-player game tree minimax computation:
alpha/cutoffs allow subtree pruning
- worst case: no subtrees pruned, all leaves examined
- for each node, on the path from that node to the root,
- alpha best already-seen option for MAX
- beta best already-seen option for MIN
- example on next page:
- compute minimax with DFS
- update alpha/beta at each node
- use these values to compute minimax at each node
- Pieter Abbeel video https://www.youtube.com/watch?v=xBXHtz4Gbdo

computing minimax, alpha, beta at a node

- for all internal MAX nodes, initialize mmx val, α to $-\infty$
- for all internal MIN nodes, initialize mmx val, β to $+\infty$
- traverse nodes DFS order
- arrive at node: update $v, \alpha / \beta$
- backing up to node:
- update v, α (if MAX), β (if MIN)
- before descent to next child: can we prune?
- prune if $\alpha>\beta$
(at MAX: MIN has better option elsewhere)
(at MIN: MAX has better option elsewhere)
- exercise. trace on this tree. show each update.
check answer with alphabeta/alphabeta.py

- answer. from A, descend to B. from B, descend to leaf 7. from leaf 7, backup: $v(B) \leftarrow \beta(B) \leftarrow 7$. can we prune? no: $v(B)=\beta(B)$ so descend to leaf 5 . from leaf 5, backup: $v(B) \leftarrow \beta(B) \leftarrow 5$. from B, backup: $v(A) \leftarrow \alpha(A) \leftarrow 5$. $v(A)=\alpha(A)$ so descend to C: $\alpha(C) \leftarrow 5$. from C, descend to leaf 9. from leaf 9, backup: $v(C) \leftarrow \beta(C) \leftarrow 9$. can we prune? no: $v(C)=9>\alpha(C)=5$ so descend to leaf 9 . from leaf 3 , backup: $v(C) \leftarrow \beta(C) \leftarrow 3$. can we prune? yes: $v(C)=3<\alpha(C)=5$ so backup now (effectively pruning C's remaining children leaf 3, leaf 1). from C, backup to A: $v(A) \leftarrow \alpha(A) \leftarrow 5$. from A, backup. done.

$$
\text { prune: } \alpha>\beta \text { or } \alpha \geq \beta \text { ? }
$$

- $\alpha>\beta$?
- on path-to-root, better opponent move elsewhere pointless to continue search at current node: backup
- $\alpha=\beta \quad$?
- on path-to-root, as good opponent move elsewhere current node: score can only get worse for opponent opponent guaranteed to have some best move elsewhere pointless to continue search at current node: backup
- example: assume all leaf nodes have same MAX-score
- how much pruning with cutoff $\alpha>\beta$?
- answer: none
- how much pruning with cutoff $\alpha \geq \beta$?
- answer: maximum amount of pruning possible :) woo hoo

