first :	name	last name		std.id#				
12 ma	arks	$30 \min (imes 1.5)$	closed book	no devices	1 page			
Re	• game tree is tree of all continuations of the game, different nodes can have same position							
• :	game graph is graph of all continuations of the game: different nodes have different positions $\bullet 3^9 = 19683$							
1.	[3 marks] For tic-tac-toe, there are about (circle one) 10^{11000} 12675 500,000 3 ⁹ nodes in the game tree.							
	For 3×3 go, there are about (circle one) 500,000 3^9 10 ¹¹⁰⁰ 12675 nodes in the game tree.							
	To solve 2×2 go with python3 minimax in under 2 seconds, it is necessary to (circle all that apply)							
	i) check pass move	s after stone moves	ii) use alpha-beta cutoffs					
	iii) check pass moves before stone moves			iv) use negamax.				
	[3 marks] Find all winning moves for nim position (26, 11, 20, 14): for each pile with a winning move, fill in the blanks.							
	26-pile 1 1 0 1	LO	reduce 26-pile to	o 17-pile: remove	9 stones			
	11-pile 1 0 1	1	reduce 11-pile to	o O-pile: remove	11 stones			
	20-pile 1 0 1 0) 0	reduce 20-pile to	opile: remove	stones			
	14-pile 1 1 1	L 0	reduce 14-pile to	5-pile: remove	9 stones			
;	[3 marks] Here is output from recursive nim(1, 1, 1)solver nimsimp.py. Fill in each blank: False(0, 1, 1)or False dict or True losing child or True(0, 0, 1)dict. Also, below, give the(0, 0, 0) False dict							
			(0, 0, 1) True lo	osing child				
	number of states	5: 4	(0, 0, 1) True di	ict				
			(0, 1, 1) False	1-11				
4.	In this White $2\times$	2 go strategy diagram, some	<pre>(1, 1, 1) True losing symmetric subtree(s)</pre>	g child				
	was(were) pruned. Label each leaf of the diagram with Black score							
	$+4, +1, 0, -1$ or -4 . Let <i>m</i> be the minimax score for Black for 2×2 go.							
	Based on this diag							
	like this: $m = 2$ or							
		ategy shows that White los						
i	so Black cannot win by more than 1, so $m \leq 1$.							
					8			

first	name	last name			std.id#			
12 ma	arks 30 min ((× 1.5) c	losed book	no devices	1 page			
Re	ecall • game tree is tree of	all continuations of the	e game, different nodes	can have same position				
\bullet game graph is graph of all continuations of the game: different nodes have different positions								
1.	$[3 \text{ marks}]$ For 3×3 go, there	are about (circle one) 500,000 3 ⁹ 10 ¹¹⁰⁰	12675 nodes in the	game tree.			
	For tic-tac-toe, there are about (circle one) 10^{11000} 12675 500,000 3^9 nodes in the game tree.							
1	To solve 2×2 go with python3 minimax in under 2 seconds, it is necessary to (circle all that apply)							
	i) use negamax	x pass moves before s	tone moves					
	iii) use alpha-beta cutof	fs	iv) check pass moves after stone moves.					
	[3 marks] Find all winning moves for nim position (25, 11, 20, 13): for each pile with a winning move, fill in the blanks.							
	25-pile 1 1 0 0 1		reduce 25-pile to	o 18-pile: remove	7 stones			
	11-pile 1 0 1 1		reduce 11-pile to	o O-pile: remove	11 stones			
	20-pile 1 0 1 0 0		reduce 20-pile to	opile: remove	stones			
	13-pile 1 1 0 1		reduce 13-pile to	o 6-pile: remove	7 stones			
i	 [3 marks] Here is output from recursive nim (1, 1, 1) solver nimsimp.py. Fill in each blank: False (0, 1, 1) or False dict or True losing child or True (0, 0, 1) 							
	dict. Also, below, give the		(0, 0, 0) Fals	e dict				
			(0, 0, 1) True losing child					
	number of states: 4		(0, 0, 1) True d	ict				
		((0, 1, 1) False	r child				
4.	(1, 1, 1) True losing child In this White 2×2 go strategy diagram, some symmetric subtree(s)							
	was(were) pruned. Label each leaf of the diagram with Black score							
	$+4, +1, 0, -1$ or -4 . Let <i>m</i> be the minimax score for Black for 2×2 go.							
	Based on this diagram only, what can you conclude about m (answer							
	like this: $m = 2$ or $m \ge -3$							
	Explain. This strategy sh							
	Black cannot win by more than 1, so $m \leq 1$.							