
first name	rst name last name							\mathbf{stc}								
12 marks	ks $30 \min(\times 1.5)$				closed book						no devices					
two lev sliding	ks] From a start position, here are the top vels of a breadth-first-search of the 2×3 tile puzzle (STP) graph. Beside each po- give taxicab score, number of inversions,					52 1_	TAXI INV SOL?	7								
	e ther solvable (yes/no). For one position, e answered for you.		5 -			TAXI INV SOL?	7		35_ 412		7					
	ks] For 2×3 STP 321450 , stp_search2.pg position seen 450321. Using this info, g															

SHOW YOUR WORK HEREyour solvable STP4 5 _1 2 3

Explain briefly here. .

If you swap the labels for 3 and 1, the position 321450 becomes the solved state. Then, if you swap the labels for 3 and 1 in the position 450321, you get a position that is 21 moves away from the solved state.

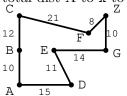
- [3 marks] Here is a road map and astar.py output after node D is done: show output after next node is done. ERD[x]: est. remaining dist to Z. DSF[x]: dist-so-far from A. ETD[x]: est. total dist A to x to Z.
- А В С D Е F G Ζ ERD 28 26 24 22 18 7 10 0 DSF 21 15 inf inf inf inf 0 11 ETD 0 37 45 37 inf inf inf inf done? yes yes yes DSF 0 21 15 28 inf inf inf 11 ETD 0 37 45 37 46 inf inf inf done? yes yes yes yes

ROUGH WORK HERE

4. [3 marks] We ran python3 15puzzle.py -p 14 15 13 12 10 9 8 11 7 6 4 1 5 2 3 three times, once for each schedule A,B,C. (Schedule A places tiles {1,2} first, etc.) For each run, in the solution found, guess the total moves made and nodes searched. Hint: each answer is in {74, 88, 120, 8615, 216085, 1538751}.

	moves	nodes
	made	searched
A)[[1,2], [3,4], [5,6,7,8], [9,10,11,12,13,14,15]]	88	216,085
B)[[1], [2], [3,4], [5], [6], [7,8], [9,13], [10,14], [11,12,15]	120	8,615
C)[[1,2,3,4], [5,9,13], [6,7,8,10,11,12,14,15]]	74	1,538,751

ROUGH WORK HERE


first name	last name .		std.id#										
12 marks					:		r	10 de	1 page				
two levels of sliding tile p sition, give and whether	from a start position, here are the top of a breadth-first-search of the 2×3 puzzle (STP) graph. Beside each po- taxicab score, number of inversions, r solvable (yes/no). For one position, swered for you.		5 -	3 2	52 1_ TAXI INV SOL?	INV SOL? 9	8 'yes	4 5 3 1	_	TAXI INV SOL?	8		
last posit	or 2×3 STP 132450, stp_search2.p; sion seen 450132. Using this info, g WORK HERE	-				with s	short	est s	olu		1 moves.		

Explain briefly here.

If you swap the labels for 2 and 3, the position 132450 becomes the solved state. Then, if you swap the labels for 2 and 3 in the position 450132, you get a position that is 21 moves away from the solved state.

- [3 marks] Here is a road map and astar.py output after node D is done: show output after next node is done. ERD[x]: est. remaining dist to Z. DSF[x]: dist-so-far from A. ETD[x]: est. total dist A to x to Z.
- Ζ В С D Е F G А 10 ERD 28 26 24 22 18 7 0 DSF 0 10 22 15 inf inf inf inf ETD 0 36 46 37 inf inf inf inf done? yes yes yes DSF 0 10 22 15 26 inf inf inf 44 inf inf inf ETD 0 36 46 37 done? yes yes yes yes

1 2 3

ROUGH WORK HERE

4. [3 marks] We ran python3 15puzzle.py -p 15 14 13 12 9 10 8 11 7 6 4 1 5 2 3 three times, once for each schedule A,B,C. (Schedule A places tile {1} first, etc.) For each run, in the solution found, guess the total moves made and nodes searched. Hint: each answer is in {78, 88, 124, 8665, 216311, 1658015}.

movesnodes
madeA)[[1], [2], [3,4], [5], [6], [7,8], [9,13], [10,14], [11,12,15]124B)[[1,2,3,4], [5,9,13], [6,7,8,10,11,12,14,15]]78C)[[1,2], [3,4], [5,6,7,8], [9,10,11,12,13,14,15]]88216,311

ROUGH WORK HERE