
cmput 355 2025 practice questions 4 (with answers)

1. For each tic-tac-toe opening move, give a sub-optimal reply. Check answers with ttt/tt.py.
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Answer. Each opening move has minimax value draw, so a reply is suboptimal if and only if it

has minimax value lose. Each losing reply is shown.
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2. Consider this 2-player alternate-turn win/loss/draw game, played on a 3x3 board: on a turn,

a player colors any empty cell; once the board is full, the win/loss/draw condition (which we

are not telling you) is used to determine the winner.

a) How does this game differ from tic-tac-toe?

b) How many nodes are in the tree of all continuations of the game?

c) Prove that the number of nodes in the graph of all continuations of the game is less than

your answer to b).

Answer.

a) in ttt the game can end before the board is full.

b) 1 + 9 + 9 ∗ 8 + 9 ∗ 8 ∗ 7 + . . .+ 9 ∗ 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 986410

c) The difference between the tree and the graph is that the graph brings transpositions back

to the same node. Thus, for each j, the number of nodes at level j in the graph is less than

or equal to the number of nodes at level j in the tree. Also, at level three, there are 9 ∗ 8 ∗ 7

nodes in the tree but only 9∗8∗7/2 nodes in the graph, so the number of nodes in the graph

will be smaller than the number of nodes in the tree.



3. a) When you solve tic-tac-toe from the empty board using ttt/tt.py, how many nodes are

in the search tree? Is this about what you expected? Explain.

b) Repeat a) using the transposition table.

c) Repeat a) using isomorphisms.

d) Repeat a) using isomorphisms and transposition table.

e) In ttt/tt.py, in function negamax(), uncomment this line

if so_far == 1: break # improvement: return once win found

and repeat each of the previous questions.

f) Based on your answer to e), how could you further improve ttt/tt.py (so that the number

of nodes searched is further reduced)?

Answer.

a) 549946. The number of nodes in the tree of all continuations if the game never ended

until the board is full would be 986411, so the number of nodes in the true tree is about 5/9

that, so about 4/9 of the leaves of the overfull tree are not reachable in the game (because

it ended before the board was full), which seems plausible.

b) 16168. From our earlier answer, because of the number of transpositions that have already

appeared by level 3, we know that the number will be at most 1/2 of that of a). This is

about 16/550 of the number of nodes in a), smaller than I would have guessed.

c) 58524. At level 1 there are only 3 non-ismorphic moves, so the number will be at most

1/3 of that of a). This is about 58/550 of the number of nodes in a), which seems plausible.

d) 8307. As expected, this is smaller that answers to b) and c). This seems plausible: humans

can easily solve this game, so the smallest proof tree, after pruning isomorphisms, should not

be too big.

e) a 94978. b 9973. c 7885. d 2740. As expected these number are all smaller than the

corresponding numbers before the code change, because at each point in the search, as soon

as a winning child is found the remaining sibling nodes are pruned. Notice that the smallest

number 2740 is still a lot larger than the number of nodes in the XKCD diagram showing

the proof of tic-tac-toe, because there the author is picking a best move each time, whereas

in this version of tt.py this does not always happen.

f) Use a better move order. E.g. in function legal_moves(), comment out

for j in range(Cell.n): and uncomment #for j in (4, 0, 2, 6, 8, 1, 3, 5, 7):.

Now you are considering cells in order center, corners, sides and the number of nodes becomes

a 67182. b 8866. c 6731. d 2458.



4. Convert decimal 29 into binary. Convert binary 1 0 1 1 1 0 1 1 into decimal.

Answer.

29 1 answer 1 1 1 0 1

14 0

7 1 check 16 + 8 + 4 + 0 + 1 = 29 :)

3 1 or use method below

1 1

1 1 check -> 187 1

0 2 93 1

1 5 46 0

1 11 23 1

1 23 11 1

0 46 5 1

1 93 2 0

1 187 <- answer 1 1 10111011 checked :)



5. For a nim position with pile sizes 15, 27, 14, 25, 7, find all winning moves.

a 15 1 1 1 1

b 27 1 1 0 1 1

c 14 1 1 1 0

d 25 1 1 0 0 1

e 7 1 1 1

Answer.

a 15 1 1 1 1

b 27 1 1 0 1 1

c 14 1 1 1 0

d 25 1 1 0 0 1

e 7 1 1 1

xor-sum 0 0 1 0 0

A move wins if and only if the new xor-sum is 0. Here this happens only 3 ways: change

2nd bit (from left) in 15 (becomes 11), change 2nd bit in 14 (becomes 10), change 1st bit

in 7 (becomes 3). Winning moves: remove 4 stones from 15-pile, 4 stones from 14-pile, or 4

stones from 7-pile.

Check your answer with nimbig.py.

6. Find a 3-pile nim position with exactly 2 winning moves, or explain why there is no such

position.

Answer.

A pile has a winning move if the pile size in binary has a 1 in the same bit position as the

leftmost 1 in the xorsum of all the piles. If there are exactly two winning moves, there are

exactly two piles with a 1 in this bit position. But then the xorsum of the pile sizes in that

position is 0, contradiction the assumption that that pile has xorsum 1. This argument works

for any even number: for any position, the number of winning moves is either 0 or an odd

number.



7. a) Draw the graph (dag) of all continuations of the game for nim(2 2 2). Group nodes by

their multiset of non-zero pile sizes, e.g. group all 6 permutations of (1 0 2) as multiset {1,

2}, group all 3 permutations of (1 0 1) as multiset {1, 1}, etc. The root of your dag will be

the node {2, 2, 2}, its children will be {1, 2, 2} and {2, 2}, and the lowest node in the dag

will be {}, the position with all piles empty. Circle all losing nodes.

b) Draw the top two levels (the root and all children) of the tree of all continuations (TOAC)

of the game for nim(2 2 2). Also, for each multiset that appears as a node in the TOAC

(so {}, {1}, {1,1}, {2}, {1,1,1}, {1,2}, {1,1,2}, {2,2}, {1,2,2}, {2,2,2}), give the number of

nodes in the subtree of that multiset in the TOAC.

Answer.

a) see also https://webdocs.cs.

ualberta.ca/~hayward/355/jem/

nim.html#sol, where the dag is drawn

sideways

222

122

 22 112

 12 111

 2  11

 1 

{ }



8. Here is output from recursive nim solver nimsimp.py. Give the missing number of states

and messages: False, False dict, True dict, or True losing child.

(2, 1)

(0, 2)

(0, 0) __________

(0, 2) __________

(0, 1)

(0, 0) __________

(0, 1) __________

(1, 1)

(0, 1) __________

(0, 1) __________

(1, 1) __________

(1, 2) __________

___ states

Answer.

(2, 1)

(0, 2)

(0, 0) False dict

(0, 2) True losing child

(0, 1)

(0, 0) False dict

(0, 1) True losing child

(1, 1)

(0, 1) True dict

(0, 1) True dict

(1, 1) False

(1, 2) True losing child

5 states



9. Starting from below, draw the next two levels of a 2×2 go second-player (White) strategy

tree that shows how White can lose by at most 1. Draw each pass move as an empty circle.

For the children of a game state at which no capturing has yet occurred, you can prune

symmetric moves.

10. a) For a given game state S and player-to-

move P , define a strategy tree.

b) The diagram shows part of a White strat-

egy for 2×2 go. Give the number of nodes in

the complete strategy tree. Explain.

c) Let m be the minimax score for Black for

2×2 go. Based on the diagram, what can you

conclude about m? Answer like this: m = 1,

or m ≥ −1, or m ≤ 4, etc. Explain.

Answer.

a) The root node of the tree corresponds to S. For each node in the tree corresponding to a

state with P to move, the node has exactly one child, showing the state resulting after the

by P that follows the strategy. For each node in the tree corresponding to a state with the

opponent to move, the node has exactly one child for each possible opponent move.

b) Isomorphic moves have been pruned. Working from the bottom up, the number of nodes

in the complete subtree rooted at position .o.. is 1+2+4+4 = 11, so the number of nodes

in the subtree rooted at *o*. is 15. Symmetric sibling .o** also has 15 nodes in its subtree,

so parent .o*. has 1 + 2 + 15 + 15 = 33 nodes. Parent ..*.’s subtree has 34 nodes, so root

....’s tree has 1 + 2 + 34 + 34 + 34 + 34 = 139 nodes.

c) This strategy shows that White loses by at most one, so Black cannot win by more than

1, so m ≤ 1. (We saw in class that m ≥ 1, so this answer together with what we learned

from this question shows that m = 1. But the correct answer for this question is m ≤ 1.)



11. What’s wrong with the following argument? For each statement: state whether True or

False; if False, explain.

• For tic-tac-toe, the number of nodes in the tree of all continuations is about 500 000.

• So ttt can be solved in a few seconds in python using minimax.

• For 3×3 go, the number of legal positions is exactly 39.

• Call a tic-tac-toe position legal if it is reachable in some game. For tic-tac-toe, the

number of legal positions is exactly 39.

• So we expect that 3×3 go can be solved in a few seconds in python using minimax.

Answer.

• true

• true

• false. 39 is the number of positions in which each cell is black or white or empty, but

many of those positions are not legal go positions: a position is go-legal if and only if

each block (connected component of same-color stones) has at least one liberty. For

example, each position with no empty cells is go-illegal.

• false. each position in which both players have a winning line is not legal. each position

in which the number of black stones differs from the number of white stones by two or

more is not legal.

• TOAC for 3×3 go has more than 101100 nodes (see the next question), too many to be

solved with vanilla minimax.

12. a) According to John Tromp, what is the number of legal 3×3 go games?

b) What is the relationship between the number of legal 3×3 go games and the number of

nodes in the TOAC.

c) Why is this number so much bigger than the number of nodes in the TOAC for tic-tac-toe?

Answer. a) About 101100.

b) They will be within a constant multiplicative factor of each other. Usually, when legal go

games are described, the final two pass moves are omitted. In this class, whenever we talk

about the TOAC, we include all moves, including the final pass move.

c) The number of legal 3×3 go positions is 12675. A game corresponds to a path in the

graph in which no node is visited more than once. The number of legal 3×3 ttt positions is

about half as many (3139 + 2907 = 6046: use the psns-info option in class program tt.py)

and in ttt, a legal move is much more restricted, because stones are never moved after they

are placed.



13. Trigo is go (with positional superko and no self-capture) played on a triangle.

x

yz

1
2 3 4

Below, from the move 4 game state, draw the next 2 levels of the tree of all continuations of

the game. Label each leaf node with its black minimax value (−3, 0 or 3).

4

Answer.

6
4 6 4

6
4

5 4

4

14. Here is out-

put from

go/tromp.py,

which solves

2×2 go with

alphabeta. Give

the missing

lines. Check

your answer

by running the

program.

0 (-4,4)

. .

. .

1 (-4,4) pass

_____

_____

2 (-4,0)

o .

. .

3 (-4,0) pass

o .

. . CUT -4 -4

3 (-4,0)

_____

_____

4 (-4,0) pass

o *

. . CUT _____

4 (-4,0)

_____

_____

5 (-4,0) pass

_____

_____

6 (-4,-1)

o .

o o

7 (-4,-1) pass

o .

o o CUT _____

7 (-4,-1)

_____

_____



Answer.

0 (-4,4)

. .

. .

1 (-4,4) pass

. .

. .

2 (-4,0)

o .

. .

3 (-4,0) pass

o .

. . CUT -4 -4

3 (-4,0)

o *

. .

4 (-4,0) pass

o *

. . CUT 0 0

4 (-4,0)

o *

o .

5 (-4,0) pass

o *

o .

6 (-4,-1)

o .

o o

7 (-4,-1) pass

o .

o o CUT -4 -4

7 (-4,-1)

. *

. .

8 (-4,-1) pass

. *

. .



15. a) In go/tromp.c and go/tromp.py, how would you change the move ordering so that the

pass move is considered last instead of first?

b) With this change, is 2x2 go solved faster or slower? Why?

c) In go/tromp.c, why does Tromp write code that depends on bit manipulation, instead of

writing code that is easier to understand?

d) What changes would you have to make to go/tromp.py so that it solves 3x3 go instead

of 2x2 go?

Answer.

a) move the lines that consider the pass move to after the for loop.

b) slower. presumably because alpha and beta bounds are not changed until the search

descends to a leaf node.

c) in the beginning of computer evolution, each computer had its own instruction set. the

introduction of assembly language programming (applicable to multiple machines) was a big

step forward. the next big step forward was to the more human-readable language FORTRAN

(at the time programmers didn’t believe that such a language’s compiled code would run

within a factor of 2 of hand-written machine code: they were wrong). progressively more

human-readable languages came along (yay python :), but, especially for small programs,

some programmers enjoy writing code in a language close to machine level such as C. John

Tromp participated in competitions for writing deliberately unreadable (obfuscated) code. he

is obviously an expert programmer: maybe he thinks that his 2x2 C code is human-readable

:) also: bit manipulation can often yield code that executes faster than code written to be

more readable. python is interpreted rather than compiled and so particularly slow, so code

written to avoid any conversions that are only for readability purposes will usually execute

faster.

d) this would take a lot of effort in python. even in C++, unless there is lots of clever pruning,

solving 3×3 positions can be intractably slow.



16. a) Give the minimax value of 1×2 go.

b) Give the minimax value of 2×2 go.

c) Give the minimax value of 2×2 go after the move 1.B[pass].

d) For the game of go (positional superko, no self-capture, komi 0) played on any graph,

prove that the minimax value is at least 0 (first player Black can always at least draw).

Answer.

a) 0. If Black plays a stone on the first move, White can capture, and Black can’t recapture

because of superko.

b) 1. see the webnotes.

c) −1. After Black passes on move 1, White can follow Black’s winning first-player strategy.

d) Assume by way of contradiction that the minimax score is −t for some positive integer t:

thus White has a second-player strategy where she always wins by at least t points. Then

Black can do the following. On move 1, pass. If White passes, then each player scores 0, so

Black does not lose. If White plays a stone, then Black can steal White’s winning strategy,

which guarantees that Black wins by at least t points. This contradicts the assumption that

White can win by at least t points. So our original assumption is false: there is no winning

second-player strategy. So there is a first-player not-losing strategy.



17. For 3×3 Go, a player has a middle-3 position if they have 3 stones on the middle row and

on at least one top-row point they don’t have a stone, and on at least one bottom-row point

they don’t have a stone.

Prove that once a player reaches a middle-3 position they can win by 9.

Answer. They can play so that, on both the top row and bottom row, they have two stones or

one stone in the middle column. From this point, the opponent has no legal moves.

hints

• see https://webdocs.cs.ualberta.ca/~hayward/355/ssgo.pdf


