
cmput 355 2025 practice questions 2 (with answers)

learning outcomes (LO) For game/puzzle algorithm, you will learn to

1. analyze algorithm runtime and space usage with mathematical reasoning,

2. construct logical proofs to demonstrate algorithm correctness and behaviour,

3. explain the behaviour of algorithms, starting with a precise description of the rules,

4. propose potential improvements of algorithms,

5. implement algorithms using python3.

1. [LO 3] What is the maze puzzle (MP), a.k.a. maze traversal problem? What is the sliding

tile puzzle (STP)? Explain how the solving the MP is similar to solving the STP.

Answer. MP: given a maze, start position, and target value, find a path from start to

target. STP: given a start ST position and target position, find a sequence of tile moves that

goes from start to target. Both problems can be solved by traversing the associated graph,

e.g. with BFS or DFS.

2. [LO 3] Why does the 355 github repo STP solver use breadth first search rather than depth

first search?

Answer. With BFS, the path found in the game graph is a shortest path.



3. [LO 2,3] a) Recall: for an r × c STP, the state space graph, also called the STP graph, is a

graph where each node corresponds to a and two nodes are adjacent if and only

if

.

Starting from the position below left, draw the next two levels of the STP graph. In your

diagram, circle each node.

3 5 2 3 5 1

4 _ 1 4 _ 2

b) Repeat a) for position above right: draw your diagram isomorphic to that for a).

Answer. a) sliding tile position. you can get from one position to the other with one sliding

tile move. Below, I leave it to you to draw the edges and circle the nodes.

3 5 2

4 _ 1

3 5 2 3 _ 2 3 5 2

_ 4 1 4 5 1 4 1 _

_ 5 2 _ 3 2 3 2 _ 3 5 _

3 4 1 4 5 1 4 5 1 4 1 2

b) 3 5 1

4 _ 2

3 5 1 3 _ 1 3 5 1

_ 4 2 4 5 2 4 2 _

_ 5 1 _ 3 1 3 1 _ 3 5 _

3 4 2 4 5 2 4 5 2 4 2 1



4. [LO 1,3] Find the average degree in the a) 3×3 b) 2×5 c) 4×4 STP graph. Show your

work.

Answer. a) 9 tile locations: 4 corners, 4 sides, 1 center. when the empty space is in those

locations, the number of possible moves is 2, 3, 4 respectively, so the average degree is

(4 ∗ 2 + 4 ∗ 3 + 1 ∗ 4)/9 = 24/9 = 8/3.

b) (4 ∗ 2 + 6 ∗ 3)/10 = 26/10 = 13/5

c) (4 ∗ 2 + 8 ∗ 3 + 4 ∗ 4)/16 = 48/16 = 3

5. [LO 1,3] Assume that the runtime for an unsolvable 3×3 STP is 2.3s. Estimate the runtime

for an unsolvable a) 2×5 STP b) 4×4 STP. Show your work.

Answer. For BFS, wc runtime is roughly proportional to number of graph edges. Define

e33, e25, e44 as number of edges in each graph respectively. Define n33, n25, n44 as number of

nodes in each graph respectively. Here, these equal 9!, 10!, 16! respectively. Sum, over all

nodes, of node degree is two times the number of edges, so number of edges is 0.5 × sum,

over all nodes, of degree.

Thus e33, e25, e44 equal 9! ∗ 0.5 ∗ 8/3, 10! ∗ 0.5 ∗ 13/5, 16! ∗ 0.5 ∗ 3 respectively.

Answer will be 2.3s × (e25/e33)

= 2.3s × (10! ∗ 0.5 ∗ 13/5)/(9! ∗ 0.5 ∗ 8/3)

= 2.3s × (10 ∗ 13/5)/(8/3)

= 2.3s × (10 ∗ 13/5 ∗ 3/8)

= 2.3s × 39/4

= 22.45s.

6. [LO 2,3] Here are two 3×7 STP positions. Some tile numbers are hidden.

a) At left, what is the change in the number of inversions after move 18 up? Explain.

b) At right, what is the change in the number of inversions after move 11 down? Explain.

? ? ? ? __ 4 15 ? ? ? ? ? ? ?

7 22 11 24 18 ? ? ? ? 11 3 18 5 26

? ? ? ? ? ? ? 15 9 __ ? ? ? ?

Answer. a) The relative order of tile 18 and any hidden position does not change, so the

change in the number of inversions is given by the change in inversions from the subsequence

(__ 4 15 7 22 11 24 18) to subsequence (18 4 15 7 22 11 24 __). Before the change,

18 is out of order with respect to 2 tiles in the subsequence, so after the change it is out of

order with all the other tiles, so 6− 2 = 4. So the number of inversions goes up by exactly 2.

b) Before, 11 is inverted with 3 tiles in the subsequence, so after it is inverted with 6− 3 = 3

tiles, so no change in the number of inversions.



7. [LO 2,3] For each STP, give the change in the number of inversions when a tile is moved

a) up b) down c) left d) right.

3 8 7 3 8 7 9

2 _ 5 2 _ 5 11

1 4 6 1 10 4 6

Answer.

a) permutation subsequence (8,7,2) changes to (7,2,8), inversions 3 changes to 1: −2.

permutation subsequence (8,7,9,2) to (7,9,2,8), inversions 4 to 3: −1.

b) perm’n subs. (5,1,4) to (4,5,1), inversions 2 to 2: 0.

perm’n subs. (5,11,1,10) to (10,5,11,1), inversions 3 to 4: +1.

c) permutation unchanged: no change in inversions.

d) permutation unchanged: no change in inversions.

8. [LO 2,3] For any STP position X, let Y be the position obtained from X by exchanging the

locations of tiles 1 and 2. For any position P , let I(P ) be the number of inversions. Give all

possible values for I(X)− I(Y ). Justify your answer.

Answer. {+1,−1}. In the sorted list of numbers, there are no numbers between 1 and 2, so

changing their respective positions will change only the {1,2} inversion: all other inversions

will be unchanged. In one of these positions, 1 appears before 2 and {1,2} is not inverted. In

the other position, 2 appears before 1 and {1,2} is inverted, so the latter position has exactly

one more inversion than the former position.

9. [LO 2,3] For each STP, give the solvability condition and whether it is solvable.

1 5 4 1 4 _ 4 _ 4 3

3 2 _ 3 2 5 2 3 1 _

1 5 2 5

Answer. From left.

columns parity odd: solvable iff inversions parity (here 6) is even. solvable.

columns parity odd: solvable iff inversions parity (here 3) is even. unsolvable.

columns parity even: solvable iff inversions parity (here 5: odd) differs from blank’s row-

from-bottom parity (here 2: even). solvable.

columns parity even: solvable iff inversions parity (here 5: odd) differs from blank’s row-

from-bottom parity (here 1: odd). unsolvable.



10. [LO 2,3] Claim: for an STP with an odd number of columns, every move leaves the parity

of the number of inversions unchanged. Prove the claim.

Answer. Assume that there are t columns. If the move is slide left or slide right, the

number of inversions is unchanged. Assume that the move is to slide a tile up. For the tile

pk at the position above the blank at the start of the move, the permutation subsequence

(pk, pk+1, . . . , pk+t−1) changes to (pk+1, . . . , pk+t−1, pk). Exactly t− 1 pairs, each with pk, are

reversed by this move. In this subsequence, if pk was in 0 inversions before, it is in t−1 now,

an increase in t− 1 inversions; if it was in 1 inversion before, it is in t− 1− 1 = t− 2 now,

an increase in t− 2− 1 = t− 3 inversions, and so on. In each case, the change in the number

of inversions is even.

11. [LO 2,3] Recall: the STP target position has tiles sorted (row by row) in increasing order

followed by the empty space. Define solvable position.

Answer. A position p is solvable if there is a sequence of moves from p to the target position.

12. [LO 2,3] Claim: for two solvable STP positions, there is a sequence of moves from one to the

other. Prove the claim.

Answer. Call the positions P1 and P2. P1 is solvable, so there is a sequence S1 of moves

from P1 to target. P2 is solvable, so there is a sequence S2 of moves from P2 to target. So

the sequence S1 followed by the reverse of S2 goes from P1 to target to P2. So we have found

a sequence of moves from P1 to P2.

13. [LO 2,3] Let x, y be two solvable positions in the STP graph. We know that there is a path

between then in the STP graph: let p = (p0 = x, . . . , pt = 7) be any such path. Let x′

(respectively y′) be the position obtained from x (resp. y) by exchanging the locations of

tiles 1 and 2. Define p′ = (p′0, . . . , p
′

t
) similarly. Explain why p′ is a path in the STP graph.

Answer. Let m be the move that takes x = p0 to p1. Then the same move m takes x′ = p′0
to p′1. Repeating this argument for each consecutive pair of nodes in p′, we see that the same

sequence of moves that takes x to y also takes x′ to y′.

14. [LO 2,3] Explain why the STP graph has exactly two components.

Answer. A component is a set of nodes such that, for each pair in the set, there is a path

between them, so this follows from the previous question.

15. [LO 2,3] Claim: for two unsolvable STP positions, there is a sequence of moves from one to

the other. Prove the claim.

Answer. This is just another way to ask question 13, so the answer to that question also

answers this question.



16. [LO 2,3] Claim: there is no sequence of moves from a solvable STP position to an unsolvable

one. Prove the claim.

Answer. Argue by contradiction: assume there is such a sequence. Then we can get from

an unsolvable position to a solvable position and then (because it is solvable) to the target,

so we can get from the first position to the target. Thus, by the definition of solvable position

(there is some sequence of moves to the target), the first position is solvable. But we assumed

it was not solvable, contradiction.

17. [LO 2,3] Using info below from python3 stp_search2.py give a solvable STP whose shortest

solution has 31 moves. Explain briefly.

start 821354670

level 32: 0 nodes, no sol’n found

last psn seen 746253108

Answer. From the info: there is a path from start s0 = 821354670 to last position seen

(LPS) q0 = 746253108. We want to relabel the tiles so that one of relabelled positions s1, q1

will be the target 123456780. We can’t do this with q0 (blank is not at end of last row), but

we can with s0. Relabel s0 = as new target 123456780: relabel 8 as 1, 2 as 2, 1 as 3, . . . 7 as

8 (below left): this gives the permutation below middle. Under this permutation, relabelling

q0 gives q1 = 867254301 (below right), a solvable STP with shortest solution 31 moves.

82135467 (1 2 3 4 5 6 7 8) 8 6 7

12345678 (3 2 4 6 5 7 8 1) 2 5 4

3 _ 1

18. [LO 1,2,3] Using info below from python3 stp_search2.py give a solvable STP whose short-

est solution has 21 moves. Explain briefly.

start 231540

level 22: 0 nodes, no sol’n found

last psn seen 540231

Answer. From info: there is a path from start s0 = 231540 to last position seen (LPS) q0 =

540231. Relabel the tiles so that s1 (relabelled s0) is target 123450 (we can’t do this with q0

because the blank is in the wrong location), so relabel 2 as 1, 3 as 2, 1 as 3, 5 as 4, 4 as 5

(below left): this gives the permutation below middle. Under this permutation, relabelling

q0 = 540231 gives q1 = 450123 (below right), a solvable STP with shortest solution 21 moves.

23154 (1 2 3 4 5) 4 5 _

12345 (3 1 2 5 4) 2 3 1



19. [LO 2,3] For each STP, give (a) number of inversions (b) whether solvable (c) number of

miplaced tiles (d) taxicab score. Justify briefly.

4 3 1 4 _ 2 1 4 _ 1 5 4

_ 2 5 3 1 5 3 2 5 3 2 _

Answer. Check your answers with play_stile.py: 5 no 5 6. 5 no 5 8. 3 no 4 7. 6 yes 4 8.

20. [LO 1,3] a) Solve this STP. After each move, show the position (you might not need all space

given). The first move has been done for you.

start 5 4 3 _ 4 3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ 2 1 5 2 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 2 3 finished

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 5 _

b) When solving the above STP with breadth-first search, the number of positions encoun-

tered is around (circle ONE ONLY)

10 50 100 150 200 250 300 350 700 1400 3000 6000 12000

Answer. a) Solution from stp_search2.py with input 23.3.

543 43 4 3 423 423 42 4 2 412 412 12 1 2 12 123

21 521 521 5 1 51 513 513 5 3 53 453 453 453 45

b) From this practice question set, we know that the maximum length solution of a 2×3

STP is 21 moves. This solution takes 12 moves, so we might guess that the number of nodes

searched is about 12/21 the number of nodes in the solvable component, which is (2×3)!/2

= 360. 12/21∗360 is around 200, so that is our guess. (From running the program we see

that the search explored 187 nodes.)

21. [LO 3] For STPs, what algorithm(s) always find(s) a shortest solution? (circle ALL that

apply)

a) breadth-first search b) A*-search with taxicab distance heuristic

c) depth-first search d) A*-search with number-misplaced-tiles heuristic

Answer. a) b) d)



22. [LO 3] Here is a road map and astar.py out-

put after node A is done. Show output after

next node is done. ERD[x]: est. remain-

ing dist to Z. DSF[x]: dist-so-far from A.

ETD[x]: est. total dist A to x to Z.

A

B

C

Z

20

20

10

23

A B C Z

ERD 28 20 22 0

DSF 0 inf inf inf

ETD 0 inf inf inf

done? yes

DSF 0 ___ ___ ___

ETD 0 ___ ___ ___

done? yes

Answer. From running stile/astar.py.

DSF 0 20 10 inf

ETD 0 40 32 inf

done? yes yes

23. [LO 3] Here is a road map and astar.py out-

put after node D is done: show output after

next node is done. ERD[x]: est. remain-

ing dist to Z. DSF[x]: dist-so-far from A.

ETD[x]: est. total dist A to x to Z.

A

B

C

D

E
F

G

Z

10

10

15

21

12
15

8
10

A B C D E F G Z

ERD 28 26 24 22 18 7 10 0

DSF 0 10 20 15 inf inf inf inf

ETD 0 36 44 37 inf inf inf inf

done? yes yes yes

DSF 0 10 ___ 15 ___ ___ ___ ___

ETD 0 36 ___ 37 ___ ___ ___ ___

done? yes yes ___ yes ___ ___ ___ ___

Answer. From running stile/astar.py.

DSF 0 10 20 15 27 inf inf inf

ETD 0 36 44 37 45 inf inf inf

done? yes yes yes yes



24. [LO 1,3] We ran stile/15puzzle.py -p 15 14 13 12 10 9 8 11 7 6 4 2 5 1 3 three

times, once for each schedule A,B,C. (schedule A places tiles {1,2,3,4} first, schedule B

places tile {1} first, etc). For each run, in the solution found, guess the total moves made

and nodes searched.

Hint: each answer is in {82, 90, 120, 6865, 145722, 1765263 }.

moves searched

A)[[1,2,3,4], [5,9,13], [6,7,8,10,11,12,14,15]] _____ _____

B)[[1], [2], [3,4], [5], [6], [7,8], [9,13], [10,14], [11,12,15] _____ _____

C)[[1,2], [3,4], [5,6,7,8], [9,10,11,12,13,14,15]] _____ _____

Answer. Schedule A has 3 subtasks: first place tiles 1,2,3,4 (top row); then place tiles

5,9,13 (left column); then finish. Schedule B has 9 subtasks. Schedule C has 4 subtasks. As

the number of subtasks increases, we expect the number of moves in the solution to increase

(because those subtasks might be taking us out of the way of a shortest solution) and the

number of nodes searched to decrease (because once we reach an intermediate target we reset

our queue to be just the neighbours of the target). The smaller numbers will be for the total

number of moves, the larger for the nodes searched. So we guess as shown below:

moves searched

A)[[1,2,3,4], [5,9,13], [6,7,8,10,11,12,14,15]] __82_ 1765263

B)[[1], [2], [3,4], [5], [6], [7,8], [9,13], [10,14], [11,12,15] _120_ 6865

C)[[1,2], [3,4], [5,6,7,8], [9,10,11,12,13,14,15]] __90_ 145722



Extra problems.

25. For this STP, give A) the number of inversions and B) the taxicab value. Also, below this

position (the root), draw the next two levels of the search space graph. Also, give C) the

number of positions reachable from this position, i.e. the number of nodes in this component

of the search space graph.

A ____ B ____ C ____ 1 3 5 7

2 4 6 -

26. What is the maximum number of inversions in a STP with these dimensions:

(a) 3×3 (b) 3×4 (c) 4×4 (d) r×c Explain briefly.

27. P is the STP below. Q is obtained from P by exchanging the places of the tiles 1 and 2.

a) Draw the first three levels of a breadth first search of the STP graph starting from P .

b) Repeat the question for Q.

c) Which of the positions in your answer to a) are solvable?

d) Which of the positions in your answer to b) are solvable?

e) Give the number of positions in the STP graph containing P . Repeat for Q.

f) Explain why your answers to e) are the same. Explain why the two STP components are

isomorphic.

_ 3 5

2 4 1

28. Prove: the solution position of a STP has 0 inversions.

29. Prove: for a STP with an odd number of columns, the change in the number of inversions

after each move is an even number.

30. Prove: every solvable STP with an odd number of columns has an even number of inversions.



31. a) Prove that this STP is unsolvable. 1 2 3

4 5 6

8 7 _

b) In the class github repo, execute stile/stile_search_v2.py < in/33no . What are the

two positions found at level 31 (the deepest level) of the search?

c) Give a permutation of 1 to 8 that maps the puzzle in a) into the STP solution position.

number 1 2 3 4 5 6 7 8

permutation ( )

d) Apply permuation c) to each position from b) and show each new position.

e) Execute stile_search_v2.py < in/33longa. How many moves does it take to solve

in/33longa? Can there be a shorter solution?

f) Are in/33longa and in/33longb the only two solvable 3×3 STPs with longest solution?

Explain carefully.

32. (a) Run stile/stile_search_v2.py < in/300. Is this STP solvable or unsolvable?

(b) Create a new file in/300no by exchanging the positions of tiles 1 and 2, and repeat (a).

(c) Explain briefly exactly one of the STPs in (a,b) is solvable.

(d) Using the output data from these two executions of stile/stile_search_v2.py < in/300,

prove that every 3×3 STP with an even number of inversions is solvable.

33. The sliding tile solvability formula assumes that the target position has tiles in ascending

order and with the blank in the last position in the last row. Modify the formula so that it

works as follows: given a starting position and a target position, return True if and only if

there is some sequence of moves that goes from start to target.


