CMPUT 355 Quiz 2 Marking Rubric

Grading Rubric

Question 1

1 mark off for each wrong indentation
1 mark off for each wrong order
Question 2
a) Incorrect w/ no work = 0

Rough word that demonstates understanding $=0.5$
Correct = 1
b) Incorrect w/ no work $=0$

Rough word that demonstates understanding $=0.5$ Correct = 1
c) Incorrect w/ no work = 0

Rough word that demonstates understanding $=0.5$ Correct = 1
d) 0.5 points per level correct. -0.25 points for repeating nodes.

Question 3
0.5 points given for each correct answer

Question 4
a) 1 point given for a position 21 moves way from goal
b) 1 point given for explanation that makes sense
c) 1 point given for how many moves the position given in a) takes
d) 1 point given for explanation that makes sense

Question 5
2 points given for correct sequence (if shorted path is given, 1 point is awarded)
6 points given for correct nodes with its respective cost (if shortest path with correct nodes and costs are given award 3 marks)

Quiz 2a

1.

(6)
(5)
(4)
(1)
(3)
(2)
2. a) The number of inversions is 3 (7 and 6,7 and 5,6 and 5)
b) The goal position is

$$
\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & -
\end{array}
$$

So the sum of distances from the goal location is $1+1+1+4+1+1+3=12$
c) There are (rows*columns)! states in a sliding tile puzzle. There are 2 components in the graph: solvable states and unsolvable states, with $1 / 2$ of all states in each, so the number of nodes in the component that includes this position is $(2 * 4)!/ 2=8!/ 2=20160$
d)

$\begin{aligned} & 123 \\ & 4765 \end{aligned}$		
D/	\R	
4123		23
_765		65
R 1	D/	$\backslash \mathrm{R}$
4123	1723	12_3
7_65	4_65	4765

3. a) Moves: 82 , Searched: $1,765,263$
b) Moves: 120, Searched: 6,865
c) Moves: 90, Searched: 145,722
4. a) Any position that takes 21 moves is a valid answer. For example,

$$
\begin{array}{ll}
4 & 5 \\
1 & 2 \\
\hline
\end{array}
$$

b) To make the initial state solvable (and the goal), we need to permute squares 4 and 5 . Thus, if we permute 4 and 5 in the last position encountered, it will be both solvable, and as many moves away from the goal as possible.
c) 21
d) From the output, level 22 is the first level to have no nodes, meaning level 21 (corresponding to 21 moves) is the furthest away from the goal.
5.

```
A 0, B 36, D 37, C 44, E 45, F 48, Z 49
```


Quiz 2b

1.

(6)
(1)
(3)
2. a) The number of inversions is $2(7$ and 5,7 and 6$)$
b) The goal position is

$$
\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7
\end{array}
$$

So the sum of distances from the goal location is $1+1+1+4+1+2+2=12$
c) There are (rows*columns)! states in a sliding tile puzzle. There are 2 components in the graph: solvable states and unsolvable states, with $1 / 2$ of all states in each, so the number of nodes in the component that includes this position is $(2 * 4)!/ 2=8!/ 2=20160$
d)

123		
4756		
D/	\R	
4123		
_756		
R 1	D/	$\backslash \mathrm{R}$
4123	1723	12_3
7_56	4_56	4756

3. a) Moves: 120, Searched: 6,865
b) Moves: 90, Searched: 145,722
c) Moves: 82, Searched: 1,765,263
4. a) Any position that takes 21 moves is a valid answer. For example,

$$
\begin{array}{ll}
4 & 5 \\
1 & 2 \\
\hline
\end{array}
$$

b) To make the initial state solvable (and the goal), we need to permute squares 1 and 2 . Thus, if we permute 1 and 2 in the last position encountered, it will be both solvable, and as many moves away from the goal as possible.
c) 21
d) From the output, level 22 is the first level to have no nodes, meaning level 21 (corresponding to 21 moves) is the furthest away from the goal.
5.

Quiz 2c

1.

(6)
(2)
(1)
(3)
(5)
(4)
2. a) The number of inversions is $2(6$ and 5,7 and 5$)$
b) The goal position is

$$
\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 &
\end{array}
$$

So the sum of distances from the goal location is $1+1+1+4+3+0+0=10$
c) There are (rows*columns)! states in a sliding tile puzzle. There are 2 components in the graph: solvable states and unsolvable states, with $1 / 2$ of all states in each, so the number of nodes in the component that includes this position is $(2 * 4)!/ 2=8!/ 2=20160$
d)

123		
4675		
D/	\}	
4123		
_675		
R1	D/	$\backslash \mathrm{R}$
4123	1623	12_3
6_75	4_75	4675

3. a) Moves: 90, Searched: 145,722
b) Moves: 82, Searched: $1,765,263$
c) Moves: 120, Searched: 6,865
4. a) Any position that takes 21 moves is a valid answer. For example,

$$
\begin{array}{ll}
4 & 5 \\
1 & 2 \\
\hline
\end{array}
$$

b) To make the initial state solvable (and the goal), we need to permute squares 3 and 2 . Thus, if we permute 3 and 2 in the last position encountered, it will be both solvable, and as many moves away from the goal as possible.
c) 21
d) From the output, level 22 is the first level to have no nodes, meaning level 21 (corresponding to 21 moves) is the furthest away from the goal.
5.

```
A 0, B 36, D 37, C 44, E45, G 44, F 48, Z 49
```

