0 . On page 0 , in the bubbles, write your ${ }^{* * *}$ CCID ${ }^{* * *}$.
On pages $0,1,2,3$, write your first name, last name and student id.

1. [2 marks] For a 3×3 hex game, assume white plays first. Circle all winning first moves.

$$
\begin{array}{lllllllll}
\text { a1 } & \mathrm{a} 2 & \mathrm{a} 3 & \mathrm{~b} 1 & \mathrm{~b} 2 & \mathrm{~b} 3 & \mathrm{c} 1 & \mathrm{c} 2 & \mathrm{c} 3
\end{array}
$$

2. [3+3 marks] In github repo program mcts1. py, lines $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$ below show three different ways to compute the uct value. For each choice of line 2, on my office desktop machine (used in my online lectures), I ran 20 trials of mcts on a 4×4 hex board for 1.0 second each time.

```
1 mean_res = child.results / child.sims
2a uct = mean_res
2b uct = mean_res+(self.c*sqrt(log(self.root_node.sims)/child.sims))
2c uct = mean_res+(self.c*(self.root_node.sims/(child.sims+self.root_node.sims)))
```

a) For each version, circle the number closest to the average number of simulations in each trial.

version 2a: 110000	130000	160000	1100	1300	1600	11000	13000	16000
version 2b: 110000	130000	160000	1100	1300	1600	11000	13000	16000
version 2c: 110000	130000	160000	1100	1300	1600	11000	13000	16000

Justify your answer briefly:
b) For each version, out of 20 trials, give the total number of times the move returned by mcts was a winning move.
version 2 a __ / 20
version 2 b \qquad /20
version 2 c \qquad /20

Justify your answer briefly:
each page 8 marks $\quad 40 \mathrm{~min} \quad$ closed book

\[

\]

3. $[1+1+4+2$ marks $]$ This is a winning 3×3 hex strategy:

$$
a 3 \wedge(b 3 \wedge(c 2 \vee c 3) \vee c 1 \wedge(b 2 \vee b 1 \wedge(a 1 \vee a 2)))
$$

a) is this a strategy for black or for white or for both?
b) is this a first-player or second-player strategy?
c) explain the strategy in words
d) If you represented the strategy using a dag, how many nodes would be in the dag? Justify.
4. Here is output from an execution of the class github mcts on this hex board. Recall cells $5,6,9,10$ are cells a1,b1,a2,b2. The diagram shows the search tree after sim 1. At each node, label x, y is wins,sims. Continue the diagram: show
 what it looks like after sim 6 (so, after all sims have executed).

```
root expand * > 5, 6, 9, 10, done
sim 1. * 6 roll 9 5 10 parent loss
sim 2. * 9 roll 10 6 parent win
sim 3. * 5 roll 10 9 parent win
sim 4. * 10 roll 6 5 9 parent loss
expand * 5 > 6, 9, 10
sim 5. * 5 9 roll 10 6 parent win
expand * 9 > 5, 6, 10
sim 6. * 9 5 roll 10 6 parent win
```


0 . On page 0 , in the bubbles, write your ${ }^{* * *}$ CCID ${ }^{* * *}$.
On pages $0,1,2,3$, write your first name, last name and student id.

1. [2 marks] For a 3×3 hex game, assume white plays first. Circle all winning first moves.

$$
\begin{array}{lllllllll}
\text { a1 } & \mathrm{b} 1 & \mathrm{c} 1 & \mathrm{a} 2 & \mathrm{~b} 2 & \mathrm{c} 2 & \mathrm{a} 3 & \mathrm{~b} 3 & \mathrm{c} 3
\end{array}
$$

2. [3+3 marks] In github repo program mcts1. py, lines $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$ below show three different ways to compute the uct value. For each choice of line 2, on my office desktop machine (used in my online lectures), I ran 20 trials of mcts on a 4×4 hex board for 1.0 second each time.

```
1 mean_res = child.results / child.sims
2a uct = mean_res+(self.c*sqrt(log(self.root_node.sims)/child.sims))
2b uct = mean_res+(self.c*(self.root_node.sims/(child.sims+self.root_node.sims)))
2c uct = mean_res
```

a) For each version, circle the number closest to the average number of simulations in each trial.

version 2a: 16000	11000	13000	1600	1100	1300	160000	110000	130000
version 2b: 16000	11000	13000	1600	1100	1300	160000	110000	130000
version 2c: 16000	11000	13000	1600	1100	1300	160000	110000	130000

Justify your answer briefly:
b) For each version, out of 20 trials, give the total number of times the move returned by mcts was a winning move.
version 2 a \qquad /20
version 2 b \qquad /20
version 2 c \qquad /20

Justify your answer briefly:
each page 8 marks $\quad 40 \mathrm{~min} \quad$ closed book

$$
\text { no devices } \quad 3 \text { pages }
$$

3. $[1+1+4+2$ marks $]$ This is a winning 3×3 hex strategy:

$$
c 1 \wedge(c 2 \wedge(b 3 \vee c 3) \vee a 3 \wedge(b 2 \vee a 2 \wedge(a 1 \vee b 1)))
$$

a) is this a strategy for black or for white or for both?
b) is this a first-player or second-player strategy?
c) explain the strategy in words
d) If you represented the strategy using a dag, how many nodes would be in the dag? Justify.
4. Here is output from an execution of the class github mcts on this hex board. Recall cells $5,6,9,10$ are cells a1,b1,a2,b2. The diagram shows the search tree after $\operatorname{sim} 1$. At each node, label x, y is wins,sims. Continue the diagram: show
 what it looks like after sim 6 (so, after all sims have executed).

```
root expand * > 5, 6, 9, 10, done
sim 1. * 9 roll 5 10 6 parent loss
sim 2. * 6 roll 5 10 parent win
sim 3. * 5 roll 9 10 6 parent loss
sim 4. * 10 roll 5 6 parent win
expand * 6 > 5, 9, 10
sim 5. * 6 10 roll 9 parent loss
expand * 10 > 5, 6, 9
sim 6. * 10 9 roll 6 parent loss
```


0 . On page 0 , in the bubbles, write your ${ }^{* * *}$ CCID ${ }^{* * *}$.
On pages $0,1,2,3$, write your first name, last name and student id.

1. [2 marks] For a 3×3 hex game, assume black plays first. Circle all winning first moves.
```
a1 a2 a3 b1 b2 b3 c1 c2 c3
```


2. [3+3 marks] In github repo program mcts1. py, lines $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$ below show three different ways to compute the uct value. For each choice of line 2, on my office desktop machine (used in my online lectures), I ran 20 trials of mcts on a 4×4 hex board for 1.0 second each time.

```
1 mean_res = child.results / child.sims
2a uct = mean_res+(self.c*(self.root_node.sims/(child.sims+self.root_node.sims)))
2b uct = mean_res
2c uct = mean_res+(self.c*sqrt(log(self.root_node.sims)/child.sims))
```

a) For each version, circle the number closest to the average number of simulations in each trial.

version 2a: 1300	1600	1100	13000	16000	11000	130000	160000	110000
version 2b: 1300	1600	1100	13000	16000	11000	130000	160000	110000
version 2c: 1300	1600	1100	13000	16000	11000	130000	160000	110000

Justify your answer briefly:
b) For each version, out of 20 trials, give the total number of times the move returned by mcts was a winning move.
version 2 a \qquad /20
version 2b \qquad /20
version 2 c \qquad /20 Justify your answer briefly:
each page 8 marks $\quad 40 \mathrm{~min} \quad$ closed book

$$
\text { o devices } 3 \text { pages }
$$

3. $[1+1+4+2$ marks $]$ This is a winning 3×3 hex strategy:

$$
c 1 \wedge(b 1 \wedge(a 1 \vee a 2) \vee a 3 \wedge(b 2 \vee b 3 \wedge(c 2 \vee c 3)))
$$

a) is this a strategy for black or for white or for both?
b) is this a first-player or second-player strategy?
c) explain the strategy in words
d) If you represented the strategy using a dag, how many nodes would be in the dag? Justify.
4. Here is output from an execution of the class github mcts on this hex board. Recall cells $5,6,9,10$ are cells a1,b1,a2,b2. The diagram shows the search tree after sim 1. At each node, label x, y is wins,sims. Continue the diagram: show
 what it looks like after sim 6 (so, after all sims have executed).

```
root expand * > 5, 6, 9, 10, done
sim 1. * 10 roll 5 6 parent win
sim 2. * 5 roll 9 10 6 parent loss
sim 3. * 9 roll 5 6 parent win
sim 4. * 6 roll 9 10 parent win
expand * 6 > 5, 9, 10
sim 5. * 6 10 roll 5 9 parent win
expand * 9 > 5, 6, 10
sim 6. * 9 6 roll 5 parent loss
```


