first	name										
each	page 8 mai	rks 40 min	closed book	no de	evices 3	pages	page 1				
0.	On page 0, On pages 0	in the bubbles, write , 1, 2, 3, write your fi	your *** CCID * rst name, last name a	** . and student	id.						
1.	. [2 marks] in tic-tac-toe program tt24.py, about how many nodes are in each of the following? For each answer, use one of these numbers: 1000, 4000, 8000, 16000, 32000, 600000, 300000, 600000, 900000.										
	a) tree of a	ll continuations of the	e game								
	b) tree of all continuations of the game if we prune isomorphic positions										
	c) dag of al	l continuations of the	game if we prune isc	morphic po	ositions						
	d) dag of al	l continuations of the	game								
2.	[4 marks] a so that neg) In this tic-tac-toe amax() is still correct	e code, where can you ?	ı insert line	e if so_far = answer: imme	== 1: bre diately aft	ak er line				
	5) def ne	egamax(d, psn, ptm)): # 1/0/-1 win/dr	aw/loss							
	6) ii	f psn.has_win(oppo)	nent(ptm)): return	n - 1							
	7) L	= psn.legal_moves	()								

```
so_far = max(so_far, -nmx)
            psn.brd[cell] = Cell.e
14)
```

 $so_far = -1$ for cell in L:

8) 9)

10)

11) 12)

13)

if len(L) == 0: return 0

psn.brd[cell] = ptm

```
15)
        return so_far
```

b) From the empty board position, what is the ratio (calls made after making change in a) //(calls made before change)? Circle only one answer.

1/21/31/65/62/3

nmx = negamax(d+1, psn, opponent(ptm))

3. [2 marks] x-bias tic-tac-toe (xttt) is this game: x gets 3-in-a-row: x win, o loss, game ends; o gets 3-in-a-row: game continues; board full and x did not win: draw. Modify this function (from tt24.py) (insert/delete/change one or more lines) so that tt24.py plays xttt.

```
def has_win(self, z):
0)
                                                      explain your changes here
1)
      for t in Win_lines:
        if (self.brd[t[0]] == z and
2)
            self.brd[t[1]] == z and
3)
4)
            self.brd[t[2]] == z):
5)
          return True
6)
      return False
```

first	name			last name		$\mathbf{student}$	id	
each	page 8	8 marks	40 min	closed	book	no devices	3 pages	page 2
4.	[4 mai	rks] For t	the nim position	n below,				
	i) the	number	of winning mov	es is	_			
	ii) one	e winning	g move is to ren	nove	_ stones f	rom pile		
	pile	size	binary	SHOW YOUR	WORK FO	R ii) HERE		
	а	15	1 1 1 1					
	b	27	1 1 0 1 1					
	с	14	1 1 1 0					
	d	25	1 1 0 0 1					

5. [2 marks] Here is the end condition for the game of nim:

if it is your turn and the total number of stones left is 0 then you lose.

Pim is similar to nim, except it has this end condition:

if it is your turn and the total number of stones left is 0 or 1 then the game ends and you lose, e.g. $pim(0\ 0\ 0)$ and $pim(0\ 0\ 1)$ are losing positions.

For pim, give the player-to-move win/loss value (\mathbf{W} or \mathbf{L}) for each position below. We have done the first one for you.

position	value	position	value	position	value	position	value
(0 0 0)	L	(0 1 1)		$(1 \ 1 \ 1)$		(0 2 2)	
(0 0 1)		(0 0 3)		(0 0 4)		(1 1 2)	
(0 0 2)		(0 1 2)		(0 1 3)			

6. [2 marks] Find a 3-pile nim position with exactly 2 winning moves or explain why no such position exists.

first name		last na	me	st			
each page 8 ma	arks 4	40 min	closed book	no devi	ces a	B pages	page 3
7. $[2 \text{ marks}]$]	For each tic-t	ac-toe position	with x to play,	give \mathbf{x} 's minim	ax score x (-	-1/0/1 lose/draw	$v/{ m win}$).
ο.				• •	0		
		ο	хо.	х.	X	x	
	x.	. x .		. 0		0	
score							

8. [6 marks] Here is a go position after 1.B[b1] 2.W[a2] 3.B[b2] 4.W[c3] 5.B[b3] 6.W[a1] 7.B[c2] 8.W[pass]. a) From this position for black to play, draw a strategy tree for black with minimax score B - W = +9.

. x . o x x o x .

b) After move 1 above, give a move 2 that is better for white than move 2 above.

your move: 2.W[___]

your move's B - W minimax score

c) After move 5, black knew that it could score +9 by a theoretical property discussed in the lectures. Explain the property.

first	name										
each	page 8 marks	40 min	closed book	no de	evices	3 pages	page 1				
0.	On page 0, in the b On pages $0, 1, 2, 3,$	ubbles, write yo write your first	our *** CCID ** t name, last name a	** . nd student	; id.						
1.	[2 marks] in tic-tac-toe program tt24.py, about how many nodes are in each of the following? For each answer, use one of these numbers: 1000, 4000, 8000, 16000, 32000, 600000, 300000, 600000, 900000.										
	a) dag of all continu	ations of the g	ame								
	b) dag of all continuations of the game if we prune isomorphic positions										
	c) tree of all continu	uations of the g	ame if we prune iso	morphic p	ositions						
	d) tree of all contin	uations of the g	game								
2.	[4 marks] a) In this so that negamax()	tic-tac-toe o is still correct?	code, where can you	insert line	e if so_far answer: imm	== 1: brea nediately after	ak er line				
	3) def negamax(l, psn, ptm):	# 1/0/-1 win/dra	aw/loss							
	4) if psn.ha	as_win(oppone	nt(ptm)): return	-1							
	5) $L = psn.2$	legal_moves()									

- 6) if len(L) == 0: return 0
 7) so_far = -1
- for cell in L:
- 9) psn.brd[cell] = ptm
- 10) nmx = negamax(d+1, psn, opponent(ptm))
- 11) so_far = max(so_far, -nmx)
- 12) psn.brd[cell] = Cell.e
- 13) return so_far

b) From the empty board position, what is the ratio(calls made after making change in a) //(calls made before change)? Circle only one answer.

3/5 4/5 1/2 1/5 2/5

3. [2 marks] x-bias tic-tac-toe (xttt) is this game: x gets 3-in-a-row: x win, o loss, game ends; o gets 3-in-a-row: game continues; board full and x did not win: draw. Modify this function (from tt24.py) (insert/delete/change one or more lines) so that tt24.py plays xttt.

```
19) def has_win(self, z): explain your changes here
20) for t in Win_lines:
21) if (self.brd[t[0]] == z and
22) self.brd[t[1]] == z and
23) self.brd[t[2]] == z):
24) return True
25) return False
```

first	name			last name		$\mathbf{student}$	id	
each	page 8	8 marks	40 min	closed	book	no devices	3 pages	page 2
4.	[4 mai	rks] For	the nim position	n below,				
	i) the	number	of winning mov	es is	_			
	ii) one	e winning	g move is to ren	nove	_ stones f	rom pile		
	pile	size	binary	SHOW YOUR	WORK FO	R ii) HERE		
	a	27	1 1 0 1 1					
	b	3	1 1					
	С	25	1 1 0 0 1					
	d	7	1 1 1					

5. [2 marks] Here is the end condition for the game of nim:

if it is your turn and the total number of stones left is 0 then you lose.

Pim is similar to nim, except it has this end condition:

if it is your turn and the total number of stones left is 0 or 1 then the game ends and you win, e.g. $pim(0\ 0\ 0)$ and $pim(0\ 0\ 1)$ are winning positions.

For pim, give the player-to-move win/loss value (\mathbf{W} or \mathbf{L}) for each position below. We have done the first one for you.

position	value	position	value	position	value	position	value
(0 0 0)	W	(0 1 1)		$(1 \ 1 \ 1)$		(0 2 2)	
(0 0 1)		(0 0 3)		(0 0 4)		(1 1 2)	
(0 0 2)		(0 1 2)		(0 1 3)			

6. [2 marks] Find a 3-pile nim position with exactly 2 winning moves or explain why no such position exists.

first name		la	st name		student id		
each	page 8 marks	40 min	closed book	no de	vices 3 pa	ges page 3	
7.	[2 marks] For eac	ch tic-tac-toe po	sition with \mathbf{x} to pla	ay, give x 's mini	max score x $(-1/0)$	$0/1 \log/draw/win).$	
		0				0	
			. x .	. x .	. 0 .		
	. X O	. X .	0	. 0 .	х	х	
	score						

8. [6 marks] Here is a go position after 1.B[b1] 2.W[c2] 3.B[b2] 4.W[a3] 5.B[b3] 6.W[c1] 7.B[a2] 8.W[pass]. a) From this position for black to play, draw a strategy tree for black with minimax score B - W = +9.

•	x	
х	x	0
	х	0

b) After move 1 above, give a move 2 that is better for white than move 2 above.

your move: 2.W[___]

your move's B - W minimax score _____

c) After move 5, black knew that it could score +9 by a theoretical property discussed in the lectures. Explain the property.

first	name	udent id								
each	page 8 m	arks 4	0 min	closed book	no devic	es 3 page	s page 1			
0.	On page On pages	$0, \text{ in the bubbl} \\ 0, 1, 2, 3, \text{ writ}$	les, write your te your first na	*** CCID *** . ame, last name and	student id.					
1.	[2 marks] answer, u	in tic-tac-toe \mathbf{I} use one of these	program tt24 e numbers: 100	.py, about how man 00, 4000, 8000, 1600	y nodes are 0, 32000, 6	e in each of the fol 0000, 300000, 600	llowing? For each 0000, 900000.			
	a) dag of all continuations of the game if we prune isomorphic positions									
	b) tree of all continuations of the game									
	c) dag of	all continuatio	ns of the gam	e						
	d) tree of	all continuation	ons of the gam	ne if we prune isomo	orphic posit	ions				
2.	[4 marks] so that n	a) In this tic egamax() is sti	-tac-toe cod ill correct?	e, where can you ins	sert line i an	f so_far == 1: swer: immediatel	break y after line			
	0) def	negamax(d, p	osn, ptm): #	1/0/-1 win/draw/	loss					
	1)	if psn.has_w	in(opponent	(ptm)): return -1						
	2)	L = psn.lega	l_moves()							
	3)	if len(L) ==	0: return 0	C						
	4)	$so_far = -1$								
	5)	for cell in	L:							

```
6) psn.brd[cell] = ptm
```

```
7) nmx = negamax(d+1, psn, opponent(ptm))
```

```
8) so_far = max(so_far, -nmx)
9) psn.brd[cell] = Cell.e
```

```
10) return so_far
```

b) From the empty board position, what is the ratio(calls made after making change in a) //(calls made before change)? Circle only one answer.

5/7 2/7 1/7 4/7 3/7

3. [2 marks] x-bias tic-tac-toe (xttt) is this game: x gets 3-in-a-row: x win, o loss, game ends; o gets 3-in-a-row: game continues; board full and x did not win: draw. Modify this function (from tt24.py) (insert/delete/change one or more lines) so that tt24.py plays xttt.

```
13) def has_win(self, z): explain your changes here
14) for t in Win_lines:
15) if (self.brd[t[0]] == z and
16) self.brd[t[1]] == z and
17) self.brd[t[2]] == z):
18) return True
19) return False
```

first	name			last name		$\operatorname{student}$	id	
each	page 8	8 marks	40 min	closed	book	no devices	3 pages	page 2
4.	[4 mai	rks] For t	the nim position	n below,				
	i) the	number	of winning mov	es is	_			
	ii) one	e winning	g move is to ren	nove	_ stones f	rom pile		
	pile	size	binary	SHOW YOUR	WORK FO	R ii) HERE		
	a	15	1 1 1 1					
	b	19	1 0 0 1 1					
	С	7	1 1 1					
	d	25	1 1 0 0 1					

5. [2 marks] Here is the end condition for the game of nim:

if it is your turn and the total number of stones left is 0 then you lose.

Pim is similar to nim, except it has this end condition:

if it is your turn and the total number of stones left is 0 then you win, e.g. $pim(0 \ 0 \ 0)$ is a winning position.

For pim, give the player-to-move win/loss value (\mathbf{W} or \mathbf{L}) for each position below. We have done the first one for you.

position	value	position	value	position	value	position	value
(0 0 0)	W	(0 1 1)		$(1 \ 1 \ 1)$		(0 2 2)	
(0 0 1)		(0 0 3)		(0 0 4)		(1 1 2)	
(0 0 2)		(0 1 2)		(0 1 3)			

6. [2 marks] Find a 3-pile nim position with exactly 2 winning moves or explain why no such position exists.

first name		la	ist name		student id	
each	page 8 marks	40 min	closed boo	ok no de	evices 3 pa	nges page 3
7.	[2 marks] For ea	ch tic-tac-toe po	sition with \mathbf{x} to p	lay, give x 's min	imax score x $(-1/6)$	0/1 lose/draw/win).
			. x o	. X .	x	X
	. x .	. x .			. 0 .	
	0	. 0 .		0		0
	score					

8. [6 marks] Here is a go position after 1.B[a2] 2.W[b3] 3.B[b2] 4.W[c1] 5.B[c2] 6.W[a3] 7.B[b1] 8.W[pass]. a) From this position for black to play, draw a strategy tree for black with minimax score B - W = +9.

0	0	•
х	х	х
	х	

b) After move 1 above, give a move 2 that is better for white than move 2 above.

your move: 2.W[___]

your move's B - W minimax score _____

c) After move 5, black knew that it could score +9 by a theoretical property discussed in the lectures. Explain the property.