0 . On page 0 , in the bubbles, write your ${ }^{* * *}$ CCID ${ }^{* * *}$.
On pages $0,1,2,3$, write your first name, last name and student id.

1. [2 marks] in tic-tac-toe program tt24.py, about how many nodes are in each of the following? For each answer, use one of these numbers: $1000,4000,8000,16000,32000,60000,300000,600000,900000$.
a) tree of all continuations of the game
b) tree of all continuations of the game if we prune isomorphic positions
c) dag of all continuations of the game if we prune isomorphic positions
d) dag of all continuations of the game
2. [4 marks] a) In this tic-tac-toe code, where can you insert line if so_far == 1: break so that negamax () is still correct?
answer: immediately after line
5) def negamax(d, psn, ptm): \# 1/0/-1 win/draw/loss
6) if psn.has_win(opponent(ptm)): return -1
7) L = psn.legal_moves()
8) if len(L) == 0: return 0
9) so_far = -1
10) for cell in L:
psn.brd[cell] = ptm
nmx = negamax(d+1, psn, opponent(ptm))
so_far = max (so_far, -nmx)
psn.brd[cell] = Cell.e
return so_far
b) From the empty board position, what is the ratio
(calls made after making change in a))/(calls made before change)? Circle only one answer.
$1 / 2$
$1 / 3$
$1 / 6$
5/6
$2 / 3$
3. [2 marks] x-bias tic-tac-toe (xttt) is this game: x gets 3-in-a-row: x win, o loss, game ends; o gets 3 -in-a-row: game continues; board full and x did not win: draw. Modify this function (from tt24.py) (insert/delete/change one or more lines) so that tt24.py plays xttt.
0)
```
def has_win(self, z): explain your changes here
    for t in Win_lines:
            if (self.brd[t[0]] == z and
                self.brd[t[1]] == z and
                self.brd[t[2]] == z):
            return True
        return False
```

4. [4 marks] For the nim position below,
i) the number of winning moves is \qquad
ii) one winning move is to remove \qquad stones from pile \qquad .
pile size binary SHOW YOUR WORK FOR ii) HERE
a $\quad 15 \quad 1 \quad 1 \quad 1 \quad 1$
b $\quad 27 \quad 1 \quad 1 \quad 0 \quad 11$
c $14 \quad 1110$
d $\quad 25 \quad 1 \quad 10001$
5. [2 marks] Here is the end condition for the game of nim:
if it is your turn and the total number of stones left is 0 then you lose.
Pim is similar to nim, except it has this end condition:
if it is your turn and the total number of stones left is 0 or 1 then the game ends and you lose, e.g. $\operatorname{pim}\left(\begin{array}{ll}0 & 0\end{array}\right)$ and $\operatorname{pim}(001)$ are losing positions.

For pim, give the player-to-move win/loss value (\mathbf{W} or \mathbf{L}) for each position below. We have done the first one for you.

6. [2 marks] Find a 3-pile nim position with exactly 2 winning moves or explain why no such position exists.
\qquad
\qquad
\qquad
\qquad
\qquad
7. [2 marks] For each tic-tac-toe position with x to play, give x 's minimax score $\mathrm{x}(-1 / 0 / 1$ lose/draw/win)

8. [6 marks] Here is a go position after 1.B[b1] 2.W[a2] 3.B[b2] 4.W[c3] 5.B[b3] 6.W[a1] 7.B[c2] 8.W[pass]. a) From this position for black to play, draw a strategy tree for black with minimax score $B-W=+9$.
. X .

0 XX
0 X .
b) After move 1 above, give a move 2 that is better for white than move 2 above.
your move: 2.W[____]
your move's $B-W$ minimax score
c) After move 5, black knew that it could score +9 by a theoretical property discussed in the lectures. Explain the property.

0 . On page 0 , in the bubbles, write your $\quad * * *$ CCID ${ }^{* * *}$.
On pages $0,1,2,3$, write your first name, last name and student id.

1. [2 marks] in tic-tac-toe program tt24.py, about how many nodes are in each of the following? For each answer, use one of these numbers: $1000,4000,8000,16000,32000,60000,300000,600000,900000$.
a) dag of all continuations of the game
b) dag of all continuations of the game if we prune isomorphic positions
c) tree of all continuations of the game if we prune isomorphic positions
d) tree of all continuations of the game
2. [4 marks] a) In this tic-tac-toe code, where can you insert line if so_far == 1: break so that negamax () is still correct? answer: immediately after line
3) def negamax(d, psn, ptm): \# 1/0/-1 win/draw/loss
4) if psn.has_win(opponent(ptm)): return -1
5) L = psn.legal_moves()
6) if $\operatorname{len}(\mathrm{L})==0$: return 0
7) so_far $=-1$
8) for cell in L:
9) psn.brd[cell] = ptm
10)
11)
12)
13)

nmx $=$ negamax $(\mathrm{d}+1$, psn, opponent (ptm))
so_far = max (so_far, -nmx)
psn.brd[cell] = Cell.e
return so_far
b) From the empty board position, what is the ratio
(calls made after making change in a))/(calls made before change)? Circle only one answer.
$\begin{array}{lllll}3 / 5 & 4 / 5 & 1 / 2 & 1 / 5 & 2 / 5\end{array}$
3. [2 marks] x-bias tic-tac-toe (xttt) is this game: x gets 3-in-a-row: x win, o loss, game ends; o gets 3 -in-a-row: game continues; board full and x did not win: draw. Modify this function (from tt24.py) (insert/delete/change one or more lines) so that tt24.py plays xttt.

```
def has_win(self, z):
        for t in Win_lines:
            if (self.brd[t[0]] == z and
                self.brd[t[1]] == z and
                self.brd[t[2]] == z):
            return True
    return False
```

explain your changes here
4. [4 marks] For the nim position below,
i) the number of winning moves is \qquad
ii) one winning move is to remove \qquad stones from pile \qquad .
pile size binary SHOW YOUR WORK FOR ii) HERE

a		27	1	1	0	1	1
b		3				1	1
c		25	1	1	0	0	1
d		7			1	1	1

5. [2 marks] Here is the end condition for the game of nim:
if it is your turn and the total number of stones left is 0 then you lose.
Pim is similar to nim, except it has this end condition:
if it is your turn and the total number of stones left is 0 or 1 then the game ends and you win, e.g. $\operatorname{pim}(000)$ and $\operatorname{pim}(001)$ are winning positions.

For pim, give the player-to-move win/loss value (\mathbf{W} or \mathbf{L}) for each position below. We have done the first one for you.

6. [2 marks] Find a 3-pile nim position with exactly 2 winning moves or explain why no such position exists.
7. [2 marks] For each tic-tac-toe position with x to play, give x 's minimax score $\mathrm{x}(-1 / 0 / 1$ lose/draw/win)

8. [6 marks] Here is a go position after 1.B[b1] 2.W[c2] 3.B[b2] 4.W[a3] 5.B[b3] 6.W[c1] 7.B[a2] 8.W[pass]. a) From this position for black to play, draw a strategy tree for black with minimax score $B-W=+9$.
. X .

x x 0
. X 0
b) After move 1 above, give a move 2 that is better for white than move 2 above.
your move: 2.W[___]
your move's $B-W$ minimax score
c) After move 5, black knew that it could score +9 by a theoretical property discussed in the lectures. Explain the property.

0 . On page 0 , in the bubbles, write your $\quad * * *$ CCID ${ }^{* * *}$.
On pages $0,1,2,3$, write your first name, last name and student id.

1. [2 marks] in tic-tac-toe program tt24.py, about how many nodes are in each of the following? For each answer, use one of these numbers: $1000,4000,8000,16000,32000,60000,300000,600000,900000$.
a) dag of all continuations of the game if we prune isomorphic positions
b) tree of all continuations of the game
c) dag of all continuations of the game
d) tree of all continuations of the game if we prune isomorphic positions
2. [4 marks] a) In this tic-tac-toe code, where can you insert line if so_far == 1: break so that negamax () is still correct? answer: immediately after line
```
0) def negamax(d, psn, ptm): # 1/0/-1 win/draw/loss
1) if psn.has_win(opponent(ptm)): return -1
2) L = psn.legal_moves()
3) if len(L) == 0: return 0
4) so_far = -1
5) for cell in L:
psn.brd[cell] = ptm
    nmx = negamax(d+1, psn, opponent(ptm))
    so_far = max(so_far, -nmx)
    psn.brd[cell] = Cell.e
    return so_far
```

b) From the empty board position, what is the ratio
(calls made after making change in a))/(calls made before change)? Circle only one answer.
5/7
$2 / 7$
$1 / 7$
$4 / 7$
$3 / 7$
3. [2 marks] x-bias tic-tac-toe (xttt) is this game: x gets 3-in-a-row: x win, o loss, game ends; o gets 3 -in-a-row: game continues; board full and x did not win: draw. Modify this function (from tt24.py) (insert/delete/change one or more lines) so that tt24.py plays xttt.
13) def has_win(self, z):
explain your changes here

```
        for t in Win_lines:
```

 if (self.brd[t[0]] == z and
 self.brd[t[1]] == z and
 self.brd[t[2]] == z):
 return True
 return False
 4. [4 marks] For the nim position below,
i) the number of winning moves is \qquad
ii) one winning move is to remove \qquad stones from pile \qquad .
pile size binary SHOW YOUR WORK FOR ii) HERE

a	15		1	1	1	1	
b		19	1	0	0	1	1
c	7			1	1	1	
d	25	1	1	0	0	1	

5. [2 marks] Here is the end condition for the game of nim:
if it is your turn and the total number of stones left is 0 then you lose.
Pim is similar to nim, except it has this end condition:
if it is your turn and the total number of stones left is 0 then you win, e.g. pim (000) is a winning position.

For pim, give the player-to-move win/loss value (\mathbf{W} or \mathbf{L}) for each position below. We have done the first one for you.

6. [2 marks] Find a 3-pile nim position with exactly 2 winning moves or explain why no such position exists.
7. [2 marks] For each tic-tac-toe position with x to play, give x 's minimax score $\mathrm{x}(-1 / 0 / 1$ lose/draw/win)

8. [6 marks] Here is a go position after 1.B[a2] 2.W[b3] 3.B[b2] 4.W[c1] 5.B[c2] 6.W[a3] 7.B[b1] 8.W[pass]. a) From this position for black to play, draw a strategy tree for black with minimax score $B-W=+9$.

00 .

x X x
. X .
b) After move 1 above, give a move 2 that is better for white than move 2 above.
your move: 2.W[____]
your move's $B-W$ minimax score
c) After move 5, black knew that it could score +9 by a theoretical property discussed in the lectures. Explain the property.

