first name	last name		$\mathbf{student}$	student id	
each page 8 marks	40 min	closed book	no devices	3 pages	page 1
0. On page 0, in the	bubbles, write y	our *** CCID ***	· .		

- On pages 0, 1, 2, 3, write your first name, last name and student id.
- 1. [4 marks] At right, unscramble these lines from the start of the alphabeta function in alphabeta.py. Write line numbers only: indent properly. We have written the first line number for you.

break #2 def alphabeta(d, T, V, v, alpha, beta): #3 for c in T[v]: #4 if ab > val: alpha, val = ab, ab #5 if alpha >= beta: #6 if isMaxNode(v, d): #7 if isTerminalNode(v,V): return V[v] #8 val = NEGINF #10	ab = alphabeta(d+1, T, V, c, alpha, beta)	#1	(3)
def alphabeta(d, T, V, v, alpha, beta): #3	break	#2	
for c in T[v]: #4	def alphabeta(d, T, V, v, alpha, beta):	#3	
if ab > val: alpha, val = ab, ab #5 if alpha >= beta: #6 if isMaxNode(v, d): #7 if isTerminalNode(v,V): return V[v] #8 return val #9 val = NEGINF #10	for c in T[v]:	#4	
<pre>if alpha >= beta: #6</pre>	if ab > val: alpha, val = ab, ab	#5	
if isMaxNode(v, d): #7	if alpha >= beta:	#6	
if isTerminalNode(v,V): return V[v] #8 return val #9 val = NEGINF #10	if isMaxNode(v, d):	#7	
return val #9	if isTerminalNode(v,V): return V[v]	#8	
val = NEGINF #10	return val	#9	
	val = NEGINF	#10	

2. [4 marks] This diagram shows an alphabeta search that has just reached node J. At each node, the bottom line shows current minimax, alpha, beta values. In order, in the rest of the search, show changes made at each non-leaf node. There might be fewer than 8 changes. We have shown you change 1.

5. [4 marks] In this alphabeta search, some subtrees are cut off. Explain the reason for each cut by filling in the blanks. We have given the answer for node J.

first name	last	t name	$\operatorname{student}$		
each page 8 marks	40 min	closed book	no devices	3 pages	page 3

6. [4 marks] For this tic-tac-toe position with x to play, draw a proof tree that shows that o can win: draw all x-moves, then for each a winning o-reply, then all x-moves, then for each a winning o-reply, and so on. Use the position as the root of your tree.

. 0 . x 0 x . . .

7. [4 marks] Modify the win condition for tic-tac-toe: 1st-player x wins with 3-in-a-row, otherwise 2nd player o wins. (It doesn't matter whether o gets 3-in-a-row.) For this position, give the minimax value: x-win or o-win). Below the position, draw the next two levels of a proof tree that justifies your answer. Label every position in the bottom level of your diagram with its minimax value.

0	•	•	minimax
•	х	•	value

first name	last name		$\operatorname{student}$	student id	
each page 8 marks	40 min	closed book	no devices	3 pages	page 1
0. On page 0, in the	bubbles, write y	our *** CCID **	* .		

- On pages 0, 1, 2, 3, write your first name, last name and student id.
- 1. [4 marks] At right, unscramble these lines from the start of the alphabeta function in alphabeta.py. Write line numbers only: indent properly. We have written the first line number for you.

if isMaxNode(v, d):	#1	(9)
if isTerminalNode(v,V): return V[v]	#2	
return val	#3	
val = NEGINF	#4	
if ab > val: alpha, val = ab, ab	#5	
if alpha >= beta:	#6	
ab = alphabeta(d+1, T, V, c, alpha, beta)	#7	
break	#8	
def alphabeta(d, T, V, v, alpha, beta):	#9	
for c in T[v]:	#10	

2. [4 marks] This diagram shows an alphabeta search that has just reached node J. At each node, the bottom line shows current minimax, alpha, beta values. In order, in the rest of the search, show changes made at each non-leaf node. There might be fewer than 8 changes. We have shown you change 1.

5. [4 marks] In this alphabeta search, some subtrees are cut off. Explain the reason for each cut by filling in the blanks. We have given the answer for node J.

first name	last	last name		student id		
each page 8 marks	40 min	closed book	no devices	3 pages	page 3	

6. [4 marks] For this tic-tac-toe position with x to play, draw a proof tree that shows that o can win: draw all x-moves, then for each a winning o-reply, then all x-moves, then for each a winning o-reply, and so on. Use the position as the root of your tree.

. x . 0 0 . . x .

7. [4 marks] Modify the win condition for tic-tac-toe: 1st-player x wins with 3-in-a-row, otherwise 2nd player o wins. (It doesn't matter whether o gets 3-in-a-row.) For this position, give the minimax value: x-win or o-win). Below the position, draw the next two levels of a proof tree that justifies your answer. Label every position in the bottom level of your diagram with its minimax value.

•	х	•	minimax
•	0	•	value

first name	last	name	$\mathbf{student} \mathbf{id}$			
each page 8 marks	40 min	closed book	no devices	3 pages	page 1	
0. On page 0, in the	bubbles, write y	our *** CCID **	* .			
On pages $0, 1, 2, 3$	3, write your firs	st name, last name ar	nd student id.			

1. [4 marks] At right, unscramble these lines from the start of the alphabeta function in alphabeta.py. Write line numbers only: indent properly. We have written the first line number for you.

if ab > val: alpha, val = ab, ab	#1	(5)
for c in T[v]:	#2	
break	#3	
ab = alphabeta(d+1, T, V, c, alpha, beta)	#4	
def alphabeta(d, T, V, v, alpha, beta):	#5	
val = NEGINF	#6	
if alpha >= beta:	#7	
return val	#8	
if isTerminalNode(v,V): return V[v]	#9	
if isMaxNode(v, d):	#10	

2. [4 marks] This diagram shows an alphabeta search that has just reached node J. At each node, the bottom line shows current minimax, alpha, beta values. In order, in the rest of the search, show changes made at each non-leaf node. There might be fewer than 8 changes. We have shown you change 1.

5. [4 marks] In this alphabeta search, some subtrees are cut off. Explain the reason for each cut by filling in the blanks. We have given the answer for node J.

first name	last	last name		student id		
each page 8 marks	40 min	closed book	no devices	3 pages	page 3	

6. [4 marks] For this tic-tac-toe position with x to play, draw a proof tree that shows that o can win: draw all x-moves, then for each a winning o-reply, then all x-moves, then for each a winning o-reply, and so on. Use the position as the root of your tree.

7. [4 marks] Modify the win condition for tic-tac-toe: 1st-player o wins with 3-in-a-row, otherwise 2nd player x wins. (It doesn't matter whether x gets 3-in-a-row.) For this position, give the minimax value: x-win or o-win). Below the position, draw the next two levels of a proof tree that justifies your answer. Label every position in the bottom level of your diagram with its minimax value.

0	•	•	minimax
•	х	•	value