0 . On page 0 , in the bubbles, write your ${ }^{* * *}$ CCID ${ }^{* * *}$ (not student id).
On this page (and all following pages) write your first name, last name and student id.

1. At right, unscramble this code (see hexgo/stone_board.py) so that it prints nodes in dfs postorder. Write line numbers only: indent properly. We have written the first line number for you.
```
for nbr in self.nbrs[p]: #(1)
print(p) #(2)
self.dfs(nbr, seen) #(3)
seen[p] = True #(4)
if not seen[p]: #(5)
def dfs(self, p, seen): #(6)
    (6) _-- _-- --- --- ---
-_- --- _-- --- --- ---
--- --- --- --- --- ---
--- --- --- --- --- ---
--- --- --- --- --- ---
-- --- --- --- ---
```

2. For this sliding tile puzzle, give A) number of inversions, B) taxicab score, C) number of nodes in the component of the sliding tile search space graph that includes this position. Also, below: from the position (the root), draw the next two levels of the search space graph.
A

C _-_-
-123
4765

ANSWER ABOVE THIS LINE
3. I ran stile/15puzzle.py -p 151413121098117642513 three times, once for each schedule A,B,C below (schedule A places tiles $\{1,2,3,4\}$ first, schedule B places tile $\{1\}$ first, etc). For each run, in the solution found, give total moves made and nodes searched.

Hint: each answer is in $\{5,82,90,120,6865,145722,1765263,319625467\}$.

```
moves searched
```

A) $[[1,2,3,4],[5,9,13],[6,7,8,10,11,12,14,15]]$
B) $[[1],[2],[3,4],[5],[6],[7,8],[9,13],[10,14],[11,12,15]$
C) $[[1,2],[3,4],[5,6,7,8],[9,10,11,12,13,14,15]]$
4. 123

54 _
360 iterations
level 22 has 0 nodes
last position encountered:
54 _
123

Here is a sliding tile puzzle and output from stile_search_v2.py. (a) Using this information, give a hardest 2×3 sliding tile puzzle (solvable, but needing the most moves to solve it). (b) Explain how you found your answer to (a). (c) How many moves are needed to solve your puzzle? (d) Explain how you found your answer to (c).
a) your hardest 2 x 3 sliding tile position:
b) Explain how you found your answer to a)
c) Moves needed to solve your puzzle \qquad
d) Explain how you found your answer to c)
3. Here are two roadmaps. Each edge label is a road distance. Below are heuristic estimates of distance remaining to Z , and A^{*} pseudocode from class. Trace the pseudocode on the graph at left, with start A and finish Z. Each time current is assigned a node, give the node and its priority. For the graph at right, this is the answer: A $0, \mathrm{C} 32, \mathrm{Z} 33$

heuristic

BZ	CZ	DZ	EZ	FZ	GZ	ZZ
26	24	22	18	7	10	0

answer: \qquad
fringe = PQ()
fringe.add(start, 0)
parent, cost, done = \{\}, \{\}, []
parent[start], cost[start] = None, 0
while not fringe.empty():
current = fringe.remove() \# min priority
done.add (current)
if current == target: break
for next in nbrs(current):
if next not in done:
new_cost $=$ cost[current] + wt (current, next)
if next not in cost or new_cost < cost [next]:
cost[next] = new_cost
priority = new_cost + heuristic(next, target)
fringe.add(next, priority)
parent[next] = current

0 . On page 0 , in the bubbles, write your ${ }^{* * *}$ CCID ${ }^{* * *}$ (not student id).
On this page (and all following pages) write your first name, last name and student id.

1. At right, unscramble this code (see hexgo/stone_board.py) so that it prints nodes in dfs postorder. Write line numbers only: indent properly. We have written the first line number for you.
```
if not seen[p]: #(1)
for nbr in self.nbrs[p]: #(2) _-_ _-- _-- _-- _-- _-- -- 
print(p) #(3)
self.dfs(nbr, seen) #(4) --- --- --- --- --- ---
seen[p] = True #(5) --- --- --- --- --- -----
def dfs(self, p, seen): #(6) _-- --- --- --- --- ---
```

2. For this sliding tile puzzle, give A) number of inversions, B) taxicab score, C) number of nodes in the component of the sliding tile search space graph that includes this position. Also, below: from the position (the root), draw the next two levels of the search space graph.
A

C _-_-
-123
4756

ANSWER ABOVE THIS LINE
first name
each page 8 marks
3. I ran stile/15puzzle.py -p 151413121098117642513 three times, once for each schedule A,B,C below (schedule A places tile $\{1\}$ first, schedule B places tiles $\{1,2\}$ first, etc). For each run, in the solution found, give total moves made and nodes searched.

Hint: each answer is in $\{5,82,90,120,6865,145722,1765263,319625467\}$.

moves searched

A) $[$ [1], $[2],[3,4],[5],[6],[7,8],[9,13],[10,14],[11,12,15]$
B) $[[1,2],[3,4],[5,6,7,8],[9,10,11,12,13,14,15]]$
C) $[[1,2,3,4],[5,9,13],[6,7,8,10,11,12,14,15]]$
4. 213

45 -
360 iterations
level 22 has 0 nodes
last position encountered:
45
213

Here is a sliding tile puzzle and output from stile_search_v2.py. (a) Using this information, give a hardest 2×3 sliding tile puzzle (solvable, but needing the most moves to solve it). (b) Explain how you found your answer to (a). (c) How many moves are needed to solve your puzzle? (d) Explain how you found your answer to (c).
a) your hardest 2 x 3 sliding tile position:
b) Explain how you found your answer to a)
c) Moves needed to solve your puzzle \qquad
d) Explain how you found your answer to c)
3. Here are two roadmaps. Each edge label is a road distance. Below are heuristic estimates of distance remaining to Z , and A^{*} pseudocode from class. Trace the pseudocode on the graph at left, with start A and finish Z. Each time current is assigned a node, give the node and its priority. For the graph at right, this is the answer: A $0, \mathrm{C} 32, \mathrm{Z} 33$

heuristic

BZ	CZ	DZ	EZ	FZ	GZ	ZZ
26	25	20	17	7	10	0

answer: \qquad
fringe = PQ()
fringe.add(start, 0)
parent, cost, done = \{\}, \{\}, []
parent[start], cost[start] = None, 0
while not fringe.empty():
current = fringe.remove() \# min priority
done.add (current)
if current == target: break
for next in nbrs(current):
if next not in done:
new_cost $=$ cost[current] + wt (current, next)
if next not in cost or new_cost < cost [next]:
cost[next] = new_cost
priority $=$ new_cost + heuristic (next, target)
fringe.add(next, priority)
parent[next] = current

0 . On page 0 , in the bubbles, write your ${ }^{* * *}$ CCID ${ }^{* * *}$ (not student id).
On this page (and all following pages) write your first name, last name and student id.

1. At right, unscramble this code (see hexgo/stone_board.py) so that it prints nodes in dfs postorder. Write line numbers only: indent properly. We have written the first line number for you.
```
seen[p] = True
    #(1)
if not seen[p]: #(2)
for nbr in self.nbrs[p]: #(3)
print(p) #(4)
self.dfs(nbr, seen) #(5) --- --- --- --- --------
def dfs(self, p, seen): #(6)
    (6) _-- _-- --- --- ---
-_ -_- --- _-- _-- _--
--- --- --- --- --- ---
--- --- --- --- --- ---
-- --- --- --- --- ---
```

2. For this sliding tile puzzle, give A) number of inversions, B) taxicab score, C) number of nodes in the component of the sliding tile search space graph that includes this position. Also, below: from the position (the root), draw the next two levels of the search space graph.
A __-_ B _-_C _-_123
4675

ANSWER ABOVE THIS LINE
first name
each page 8 marks
3. I ran stile/15puzzle.py -p 151413121098117642513 three times, once for each schedule A,B,C below (schedule A places tiles $\{1,2\}$ first, schedule B places tile $\{1,2,3,4\}$ first, etc). For each run, in the solution found, give total moves made and nodes searched.

Hint: each answer is in $\{5,82,90,120,6865,145722,1765263,319625467\}$.

```
moves searched
```

A) $[[1,2],[3,4],[5,6,7,8],[9,10,11,12,13,14,15]]$
B) $[[1,2,3,4],[5,9,13]$, $[6,7,8,10,11,12,14,15]]$
C) $[[1],[2],[3,4],[5],[6],[7,8],[9,13],[10,14],[11,12,15]$

---_ --_--_

Here is a sliding tile puzzle and output from stile_search_v2.py. (a) Using this information, give a hardest 2×3 sliding tile puzzle (solvable, but needing the most moves to solve it). (b) Explain how you found your answer to (a). (c) How many moves are needed to solve your puzzle? (d) Explain how you found your answer to (c).
a) your hardest 2 x 3 sliding tile position:
b) Explain how you found your answer to a)
c) Moves needed to solve your puzzle \qquad
d) Explain how you found your answer to c)
3. Here are two roadmaps. Each edge label is a road distance. Below are heuristic estimates of distance remaining to Z , and A^{*} pseudocode from class. Trace the pseudocode on the graph at left, with start A and finish Z. Each time current is assigned a node, give the node and its priority. For the graph at right, this is the answer: A $0, \mathrm{C} 32, \mathrm{Z} 33$

heuristic

BZ	CZ	DZ	EZ	FZ	GZ	ZZ
26	24	22	18	7	2	0

answer: \qquad
fringe = PQ()
fringe.add(start, 0)
parent, cost, done = \{\}, \{\}, []
parent[start], cost[start] = None, 0
while not fringe.empty():
current = fringe.remove() \# min priority
done.add (current)
if current == target: break
for next in nbrs(current):
if next not in done:
new_cost $=$ cost[current] + wt (current, next)
if next not in cost or new_cost < cost [next]:
cost[next] = new_cost
priority = new_cost + heuristic(next, target)
fringe.add(next, priority)
parent[next] = current

