
first name last name student id

each page 8 marks 40 min closed book no devices 3 pages page 1

0. On page 0, in the bubbles, write your *** CCID *** (not student id).

On this page (and all following pages) write your first name, last name and student id.

1. At right, unscramble this code (see hexgo/stone_board.py) so that it prints nodes in dfs postorder.

Write line numbers only: indent properly. We have written the first line number for you.

for nbr in self.nbrs[p]: #(1) (6) ___ ___ ___ ___ ___

print(p) #(2) ___ ___ ___ ___ ___ ___

self.dfs(nbr, seen) #(3) ___ ___ ___ ___ ___ ___

seen[p] = True #(4) ___ ___ ___ ___ ___ ___

if not seen[p]: #(5) ___ ___ ___ ___ ___ ___

def dfs(self, p, seen): #(6) ___ ___ ___ ___ ___ ___

2. For this sliding tile puzzle, give A) number of inversions, B) taxicab score, C) number of nodes in the

component of the sliding tile search space graph that includes this position. Also, below: from the

position (the root), draw the next two levels of the search space graph.

A ____ B ____ C ____ _ 1 2 3

4 7 6 5

ANSWER ABOVE THIS LINE

ROUGH WORK HERE

first name last name student id

each page 8 marks 40 min closed book no devices 3 pages page 2

3. I ran stile/15puzzle.py -p 15 14 13 12 10 9 8 11 7 6 4 2 5 1 3 three times, once for each

schedule A,B,C below (schedule A places tiles {1,2,3,4} first, schedule B places tile {1} first, etc).

For each run, in the solution found, give total moves made and nodes searched.

Hint: each answer is in {5, 82, 90, 120, 6865, 145722, 1765263, 319625467 }.

moves searched

A)[[1,2,3,4], [5,9,13], [6,7,8,10,11,12,14,15]] ______ ______

B)[[1], [2], [3,4], [5], [6], [7,8], [9,13], [10,14], [11,12,15] ______ ______

C)[[1,2], [3,4], [5,6,7,8], [9,10,11,12,13,14,15]] ______ ______

4. 1 2 3

5 4 _

360 iterations

level 22 has 0 nodes

last position encountered:

5 4 _

1 2 3

Here is a sliding tile puzzle and output from

stile_search_v2.py. (a) Using this information, give

a hardest 2×3 sliding tile puzzle (solvable, but needing

the most moves to solve it). (b) Explain how you found

your answer to (a). (c) How many moves are needed

to solve your puzzle? (d) Explain how you found your

answer to (c).

a) your hardest 2x3 sliding tile position: ___ ___ ___

___ ___ ___

b) Explain how you found your answer to a)

c) Moves needed to solve your puzzle _______

d) Explain how you found your answer to c)

first name last name student id

each page 8 marks 40 min closed book no devices 3 pages page 3

3. Here are two roadmaps. Each edge label is a road distance. Below are heuristic estimates of distance

remaining to Z, and A* pseudocode from class. Trace the pseudocode on the graph at left, with start

A and finish Z. Each time current is assigned a node, give the node and its priority. For the graph at

right, this is the answer: A 0, C 32, Z 33

A

B

C

D

E
F

G

Z

10

10

15

21

12
15

8
10

A

B

C

Z

20

20

10

23

heuristic example graph heuristic

BZ CZ DZ EZ FZ GZ ZZ BZ CZ ZZ

26 24 22 18 7 10 0 20 22 0

answer: __________________________________ example graph answer: A 0, C 32, Z 33

fringe = PQ()

fringe.add(start, 0)

parent, cost, done = {}, {}, []

parent[start], cost[start] = None, 0

while not fringe.empty():

current = fringe.remove() # min priority

done.add(current)

if current == target: break

for next in nbrs(current):

if next not in done:

new_cost = cost[current] + wt(current, next)

if next not in cost or new_cost < cost[next]:

cost[next] = new_cost

priority = new_cost + heuristic(next, target)

fringe.add(next, priority)

parent[next] = current

first name last name student id

each page 8 marks 40 min closed book no devices 3 pages page 1

0. On page 0, in the bubbles, write your *** CCID *** (not student id).

On this page (and all following pages) write your first name, last name and student id.

1. At right, unscramble this code (see hexgo/stone_board.py) so that it prints nodes in dfs postorder.

Write line numbers only: indent properly. We have written the first line number for you.

if not seen[p]: #(1) (6) ___ ___ ___ ___ ___

for nbr in self.nbrs[p]: #(2) ___ ___ ___ ___ ___ ___

print(p) #(3) ___ ___ ___ ___ ___ ___

self.dfs(nbr, seen) #(4) ___ ___ ___ ___ ___ ___

seen[p] = True #(5) ___ ___ ___ ___ ___ ___

def dfs(self, p, seen): #(6) ___ ___ ___ ___ ___ ___

2. For this sliding tile puzzle, give A) number of inversions, B) taxicab score, C) number of nodes in the

component of the sliding tile search space graph that includes this position. Also, below: from the

position (the root), draw the next two levels of the search space graph.

A ____ B ____ C ____ _ 1 2 3

4 7 5 6

ANSWER ABOVE THIS LINE

ROUGH WORK HERE

first name last name student id

each page 8 marks 40 min closed book no devices 3 pages page 2

3. I ran stile/15puzzle.py -p 15 14 13 12 10 9 8 11 7 6 4 2 5 1 3 three times, once for each

schedule A,B,C below (schedule A places tile {1} first, schedule B places tiles {1,2} first, etc). For

each run, in the solution found, give total moves made and nodes searched.

Hint: each answer is in {5, 82, 90, 120, 6865, 145722, 1765263, 319625467 }.

moves searched

A)[[1], [2], [3,4], [5], [6], [7,8], [9,13], [10,14], [11,12,15] ______ ______

B)[[1,2], [3,4], [5,6,7,8], [9,10,11,12,13,14,15]] ______ ______

C)[[1,2,3,4], [5,9,13], [6,7,8,10,11,12,14,15]] ______ ______

4. 2 1 3

4 5 _

360 iterations

level 22 has 0 nodes

last position encountered:

4 5 _

2 1 3

Here is a sliding tile puzzle and output from

stile_search_v2.py. (a) Using this information, give

a hardest 2×3 sliding tile puzzle (solvable, but needing

the most moves to solve it). (b) Explain how you found

your answer to (a). (c) How many moves are needed

to solve your puzzle? (d) Explain how you found your

answer to (c).

a) your hardest 2x3 sliding tile position: ___ ___ ___

___ ___ ___

b) Explain how you found your answer to a)

c) Moves needed to solve your puzzle _______

d) Explain how you found your answer to c)

first name last name student id

each page 8 marks 40 min closed book no devices 3 pages page 3

3. Here are two roadmaps. Each edge label is a road distance. Below are heuristic estimates of distance

remaining to Z, and A* pseudocode from class. Trace the pseudocode on the graph at left, with start

A and finish Z. Each time current is assigned a node, give the node and its priority. For the graph at

right, this is the answer: A 0, C 32, Z 33

A

B

C

D

E
F

G

Z

10

10

15

21

12
15

8
10

A

B

C

Z

20

20

10

23

heuristic example graph heuristic

BZ CZ DZ EZ FZ GZ ZZ BZ CZ ZZ

26 25 20 17 7 10 0 20 22 0

answer: __________________________________ example graph answer: A 0, C 32, Z 33

fringe = PQ()

fringe.add(start, 0)

parent, cost, done = {}, {}, []

parent[start], cost[start] = None, 0

while not fringe.empty():

current = fringe.remove() # min priority

done.add(current)

if current == target: break

for next in nbrs(current):

if next not in done:

new_cost = cost[current] + wt(current, next)

if next not in cost or new_cost < cost[next]:

cost[next] = new_cost

priority = new_cost + heuristic(next, target)

fringe.add(next, priority)

parent[next] = current

first name last name student id

each page 8 marks 40 min closed book no devices 3 pages page 1

0. On page 0, in the bubbles, write your *** CCID *** (not student id).

On this page (and all following pages) write your first name, last name and student id.

1. At right, unscramble this code (see hexgo/stone_board.py) so that it prints nodes in dfs postorder.

Write line numbers only: indent properly. We have written the first line number for you.

seen[p] = True #(1) (6) ___ ___ ___ ___ ___

if not seen[p]: #(2) ___ ___ ___ ___ ___ ___

for nbr in self.nbrs[p]: #(3) ___ ___ ___ ___ ___ ___

print(p) #(4) ___ ___ ___ ___ ___ ___

self.dfs(nbr, seen) #(5) ___ ___ ___ ___ ___ ___

def dfs(self, p, seen): #(6) ___ ___ ___ ___ ___ ___

2. For this sliding tile puzzle, give A) number of inversions, B) taxicab score, C) number of nodes in the

component of the sliding tile search space graph that includes this position. Also, below: from the

position (the root), draw the next two levels of the search space graph.

A ____ B ____ C ____ _ 1 2 3

4 6 7 5

ANSWER ABOVE THIS LINE

ROUGH WORK HERE

first name last name student id

each page 8 marks 40 min closed book no devices 3 pages page 2

3. I ran stile/15puzzle.py -p 15 14 13 12 10 9 8 11 7 6 4 2 5 1 3 three times, once for each

schedule A,B,C below (schedule A places tiles {1,2} first, schedule B places tile {1,2,3,4} first, etc).

For each run, in the solution found, give total moves made and nodes searched.

Hint: each answer is in {5, 82, 90, 120, 6865, 145722, 1765263, 319625467 }.

moves searched

A)[[1,2], [3,4], [5,6,7,8], [9,10,11,12,13,14,15]] ______ ______

B)[[1,2,3,4], [5,9,13], [6,7,8,10,11,12,14,15]] ______ ______

C)[[1], [2], [3,4], [5], [6], [7,8], [9,13], [10,14], [11,12,15] ______ ______

4. 1 3 2

4 5 _

360 iterations

level 22 has 0 nodes

last position encountered:

4 5 _

1 3 2

Here is a sliding tile puzzle and output from

stile_search_v2.py. (a) Using this information, give

a hardest 2×3 sliding tile puzzle (solvable, but needing

the most moves to solve it). (b) Explain how you found

your answer to (a). (c) How many moves are needed

to solve your puzzle? (d) Explain how you found your

answer to (c).

a) your hardest 2x3 sliding tile position: ___ ___ ___

___ ___ ___

b) Explain how you found your answer to a)

c) Moves needed to solve your puzzle _______

d) Explain how you found your answer to c)

first name last name student id

each page 8 marks 40 min closed book no devices 3 pages page 3

3. Here are two roadmaps. Each edge label is a road distance. Below are heuristic estimates of distance

remaining to Z, and A* pseudocode from class. Trace the pseudocode on the graph at left, with start

A and finish Z. Each time current is assigned a node, give the node and its priority. For the graph at

right, this is the answer: A 0, C 32, Z 33

A

B

C

D

E
F

G

Z

10

10

15

21

12
15

8
10

A

B

C

Z

20

20

10

23

heuristic example graph heuristic

BZ CZ DZ EZ FZ GZ ZZ BZ CZ ZZ

26 24 22 18 7 2 0 20 22 0

answer: __________________________________ example graph answer: A 0, C 32, Z 33

fringe = PQ()

fringe.add(start, 0)

parent, cost, done = {}, {}, []

parent[start], cost[start] = None, 0

while not fringe.empty():

current = fringe.remove() # min priority

done.add(current)

if current == target: break

for next in nbrs(current):

if next not in done:

new_cost = cost[current] + wt(current, next)

if next not in cost or new_cost < cost[next]:

cost[next] = new_cost

priority = new_cost + heuristic(next, target)

fringe.add(next, priority)

parent[next] = current

