
cmput 355 2024 homework 5, with hints

Explain each answer, show all work.

1. For n×n hex for each n ≤ 5, show all winning first black moves. Repeat for white.

2. Using the solver hex/hex_simple.py on your favorite machine, for x to play and then for

o to play, solve 3×3, 3×4 (3 rows, 4 columns), 4×4 hex: you will need to change ROWS

and/or COLS. If this takes more than 1 minute, just kill the process and ignore

that part of the question. In each case, give

a) who wins

b) a winning move if first-player wins

c) the number of calls made in solving

d) the runtime.

3. In hex_simple.py, uncomment the lines that assign a better move order to CELLS and

repeat the previous question.

4. For the 4×3 hex board, give a CELLS move order that reduces the number of calls made by

hex_simple.py both for solving x and for solving o.

5. a) Which of these features does hex_simple.py use? For each unused feature: would it

significantly improve runtime?

prune isomorphic positions transposition table alphabeta search

b) In hex_simple.py, what algorithm does has_win() use to determine whether a player

has won the game?

6. Define search space as the number of reachable positions in a game. Estimate each of the

following. Sort from lowest to highest.

3×3 go search space, 3×3 hex search space, tic-tac-toe search space, 39 = 19 683



7. Here we estimate n×n hex search space. Assume black plays first. a) Explain why each

reachable position with b black stones and w white stones has b = w or b = w + 1.

b) Define f(n) as the number of n×n Hex positions that satisfy the condition in a). Recall

from CMPUT 272 that c(n, k) is the number of k-element subsets of an n-set. Explain why

f(3) equals this:

c(9, 0)+ c(9, 1)+ c(9, 1) ∗ c(8, 1)+ c(9, 2) ∗ c(7, 1)+ c(9, 2) ∗ c(7, 2)+ c(9, 3) ∗ c(6, 2)+ c(9, 3) ∗

c(6, 3) + c(9, 4) ∗ c(5, 3) + c(9, 4) ∗ c(5, 4) + c(9, 5) ∗ c(4, 4).

c) Give similar expressions to those in b) for f(1) and f(2).

d) Is f(n) an upper bound on the search space, a lower bound on the search space, or neither?

e) Program hex/hex_count.py computes values f(n). Roughly, what is the ratio of f(n)/(3n)?

8. https://webdocs.cs.ualberta.ca/~hayward/355/mcts24.pdf shows output from the start

of an execution of mcts/main.py (mcts x) for the empty 2×2 hex board.

a) After the search, what criterion is used to pick the move to play? In this case, what move

was played: a1, a2, b1, or b2?

b) Is the move from a) provably winning, probably winning, provably losing, probably losing,

or none of these?

c) Explain each line of ouput from the slides

d) Find a simulation in which the leaf selection was made by picking a most-likely-winning

child at each step.

e) Find a simulation in which the leaf selection was made by not always picking a most-

likely-winning child, or explain why there is none.

f) Show the mcts tree after the first 9 simulations. Label each node with its cell name, wins,

and visits (simulations).

9. a) Run python3 main.py in mcts on the 4×4 board. What move does it make? Is this a

winning move?

b) In mcts/mcts1.py, replace this line

uct = mean_res+(self.c*sqrt(log(self.root_node.sims)/child.sims))

with line uct = mean_res and repeat a). How do your results compare with a)?

10. Computing logarithms and square roots can be slow on some systems. In mcts/mcts1.py,

replace square root factor from the previous question with factor

self.root_node.sims/(child.sims + self.root_node.sims). What is the ratio of num-

ber of simulations performed with this change compared to previously, say on 4×4 hex from

the empty board?

11. Here is one way that the mcts algorithm in mcts/ could be improved. At a node, whenever

a true win (i.e. minimax win, so in hex once a player has joined their two sides) is detected,



prune their siblings.

a) For any two player game, what else could be done at this point?

b) For Hex, what else could be done at this point?

12. For each of the winning 3×3 hex strategies below:

a) is this a first-player or second-player strategy? and for black or for white or for both?

b) explain the strategy in words

c) If you represented the strategy using a dag or tree, about how many nodes would be in

the dag or tree?

b2 ∧ (b1 ∨ c1) ∧ (a3 ∨ b3)

a3 ∧ (a2 ∧ (a1 ∨ b1) ∨ c1 ∧ (b2 ∨ c2 ∧ (b3 ∨ c3)))

a2 ∧ (a1 ∨ b1) ∧ (a3 ∨ c2 ∧ (b2 ∨ c1) ∧ (b3 ∨ c3))

13. See slide 32 in

https://webdocs.cs.ualberta.ca/~hayward/talks/hex.someques.pdf

a) Explain why the black stone is virtually connected to the top. Write this virtual connection

in logical form using the notation from the previous question.

b) Explain why the black stone is virtually connected to the bottom. Write this virtual

connection in logical form using the notation from the previous question.

c) Explain why the top is virtually connected to the bottom. Write this virtual connection

in logical form using the notation from the previous question.

14. See slide 45 in

https://webdocs.cs.ualberta.ca/~hayward/talks/hex.someques.pdf

a) This position is white-to-play. If white’s move is not in one of the 9 dark cells, explain

how black can win.

b) If white’s move is not at the 1 dark cell in slide 48, explain how black can win.

c) For a given hex position and given player-to-move, explain what a mustplay region is.



hints

1. slide 20ff https://webdocs.cs.ualberta.ca/~hayward/talks/hex.someques.pdf

2. black-to-play, black plays top-to-bottom, mac 2021 desktop

3x3 b c1 5677 0.0

3x4 b a1 161899 0.5

4x4 b ? ? > 60.0

3. 3x3 b b2 678 0.0

3x4 b b2 21668 0.1

4x4 b c2 7034997 26.3

4. 4x3 w -- 456373 1.3 default order

4x3 w -- 40294 0.2 (4,7,5,6,3,2,8,9,1,10,0,11)

We want o to find a winning strategy quickly. Put 4,7 at the front of the order: then o

always gets at least one of these and x is in trouble. Let me know if you can do better :) .

5. a) none. there are generally fewer symmetries in hex than ttt: the most common is rotation

by 180 degrees, you are unlikely to reduce the search space by more than .5. There are lots of

transpositions in hex, the dag of all continuations (DOAC) would probably have less than .5

the nodes of the TOAC. There are only two outcome values in hex (win/loss), compared to

three in ttt (win/loss/draw), so alphabeta won’t save as much as it does with ttt, especially

because hex_simple is faster than pure minimax, as it returns as soon as a winning child is

found.

6. tic-tac-toe: search space is numuber of entries in tt after solving (why?). I modified tt24.py

to give this info. 4520 nodes.

3x3 hex: search_space() in hex_simple.py. 5514 nodes.

3x3 go: see https://tromp.github.io/ and https://tromp.github.io/go/legal.html :

3x3 legal go positions 12675.

caveat since legal moves from a postion depends not just on the position but only the

complete move history, a better measure of go search space is the number of paths (with no

repeated node) from the root in a graph with 12675 nodes. this will be much bigger than

12675 (interesting research question: estimate this number).

7. a) number of moves made by black will always be equal, or one more than, number of moves

made by white

b) after black has placed j stones and white has placed k stones, black had c(n ∗ n, j) ways

to place her stones, and white had c(n ∗ n− j, k) ways to place her stones.

c) f(1) = c(1, 0) + c(1, 1) = 2. f(2) = c(4, 0) + c(4, 1) + c(4, 1) ∗ c(3, 1) + c(4, 2) ∗ c(2, 1) +



c(4, 2 ∗ c(2, 2) = 35.

d) upper bound: some of the postions counted by f(n) are not reached because the game

ended earlier, e.g. a 2×2 hex position with x at a1,a2 and o at b1,b2 is never reached, because

black wins after her 2nd move.

e) it’s getting close to 1/n

8. covered in detail in the lecture Mar 20.

9. a) the program is non-deterministic, so the winning move varies. I ran the program 20

times with 1s runtime, it found a winning move 19 times. Each run performed about 11000

simulations.

b) the number of simulations increased from around 11000 to around 16000, which is to be

expected since the floating point function calls to square root and logarithm take significant

time. The search changes from an exploitation-exploration algorithm to an exploitation-only

algorithm, so we might expect it to make a bad move here: I ran it 20 times on the 4×4

board, it found a winning move 15 times.

10. The number of simulations improved from around 11000 to around 13000, so about 11/13. I

ran it 20 times on the 4×4 board, it found a winning move 17 times.

11. a) Assume that a node p in the game tree has a child v and that v has a child c and that c

is a win. Then v is a loss, so we can use this info in the rest of our search. For example, we

might check whether v has any siblings, and if so, just prune v.

b) In Hex (also tic-tac-toe) once we know that c wins we can prune all children of p except

moving to cell c, because if we don’t then the opponent can just move to c after we move to

not-c.

12. We answer for the second connection: we leave the other two to you.

a) this strategy works for black (top-to-bottom). it supplies an initial move, so it is for the

first player.

b) black plays at a3, leaving a black top-to-bottom virtual connection. this vc is formed by

two semi-connections (first-player) S1 and S2.

S1 is this: black plays at a2 and then plays one of {a1, b1} (white cannot take both).

S2 is this: black plays at c1 and then plays either the one-cell sc S3 = {b2} or the three-cell

sc S4.

S4 is this: black plays at c2 and then plays one of {b3, c3}.

c) Here is the answer for the tree: the dag has fewer nodes, as there are some transpositions

(e.g. a3 a1 c1 a2 and a3 a2 c1 a1). The tree root corresponds to the starting position (empty

board). This is a strategy tree, so each node with player(black)-to-move has exactly one



child (the move from the strategy), each node with opponent(white)-to-move has all possible

moves (one for each empty cell).

Below is part of the tree. Each node * is a subtree isomorphic to the subtree at the same

level with root c1: these three subtrees each have 21 nodes.

Each node + is a subtree isomorphic to the subtree at the same level with root c3. these five

subtrees each have 13 nodes. The total number of tree nodes is 1+1+8+8+3∗21+5∗13 = 146.

root
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b3 b3 c3 b3

13. covered in the lectures

a) the cell set is {c1, d1}: if white plays at one of these, play can play at the other to join

the black stone at c2 to the top.

b) the cell set is {d2, b3, c3, d3, a4, b4, c4, d4}. this is the 4-3-2 side template: if white plays

in {b3, a4, b4} black plays at d3; if white plays in {d2, c3, d3, c4, d4} or outside the cell set

black plays at b3.

c) combine the two virtual connections. logic form is left for you.

14. covered in the lectures

a) the diagram shows the cells of a black win-threat: after black plays at the dot (e4), play

has a top-to-bottom vc using the remaining 8 grey cells.

b) slides 45, 46, 47 each show a black win-threat. the intersection of the cell sets of these 3

win-threats is the one cell shown on slide 48 (d5). If white plays at any other cell cx, then cx

does not intersect all 3 win-threats, so it misses at least one win-threat, so after white plays

at cx, black can play at any win-threat that cx did not iterfere with, turning the win-threat

into a winning vc. the intere


