cmput 3552024 homework 4, with hints

For tic-tac-toe, use solver ttt/tt24.py. Explain each answer, show all work.

1. For each of the 3 non-isomorphic opening tic-tac-toe moves, find all best opponent responses.
2. Consider this 2-player alternate-turn win/loss/draw game, played on a 3 x 3 board. On a turn, a player colors any empty cell. Once the board is full, the win/loss/draw condition (which we are not telling you) is used to determine the winner.
a) How does this game differ from tic-tac-toe? b) How many nodes are in the tree of all continuations of the game?
3. Use the solver: how many nodes are in the tic-tac-toe
a) tree of all continuations of the game?
b) directed acyclic graph (dag) of all continuations of the game?
c) tree of all continuations of the game if we prune isomorphic positions?
d) dag of all continuations of the game if we prune isomorphic positions?
4. In tt24.py, modify function has_win() so that it always returns false.
a) From the empty board, does info() still execute?
b) If a) is yes, what is the first-player outcome (win/loss/draw)?
c) What node counts does it return?
d) What nodes counts does it return with transposition checking?
e) What nodes counts does it return with isomorphism checking?
f) What nodes counts does it return with transpotion and isomorphism checking?
5. a) In tt24.py, in function negamax (), uncomment this line
if so_far == 1: break \# improvement: return once win found and solve from the empty board. How many nodes are in the search tree?
b) Repeat a) for the search dag instead of search tree.
c) Repeat b) if also checking for isomorphisms.
6. Modify tt24.py as in the previous question and also, in function legal_moves(), comment out preceding line for j in range(Cell.n):
and uncomment line \#for j in (4, $0,2,6,8,1,3,5,7$):
Give the number of nodes to solve from the empty board
a) without transposition or isomorphism checking
b) with transposition checking
c) with both transposition and isomorphism checking.
7. Consider the tic-tac-toe variant x-bias:

- x gets 3 -in-a-row: game ends, x wins, o loses
- o gets 3-in-a-row: game continues
- board fills and x does not get 3 -in-a-row: draw

Modify tt24.py for these rules.
8. Consider a tic-tac-toe position p. Using tt24. py, we solve p and get a node count of x. Then we turn on the transposition table option and solve p and get a node count of y.
a) What is the relationship between x and y ? (equal, $x>y, x<y$, or it varies)
b) Continue from a). Turn the transposition table option off and solve p for a third time. What is the node count z ?
9. Convert decimal number 29 into binary.
10. Convert binary number $10 \begin{array}{llllll} & 1 & 1 & 1 & 1 & 1 \text { into decimal. }\end{array}$
11. For a nim position with pile sizes $15,27,14,25,7$, find all winning moves.
$\left.\begin{array}{lrlllllll}\text { a } & 15 & & 1 & 1 & 1 & 1 & \\ \text { b } & 27 & & 1 & 1 & 0 & 1 & 1\end{array}\right]$
12. Find a 3 -pile nim position with exactly 2 winning moves, or explain why there is no such position.
13. a) Draw the dag of all continuations of the game for nim(2 2 2). Group nodes by their multiset of non-zero pile sizes, e.g. group all 6 permutations of (102) as multiset $\{1,2\}$, group all 3 permutations of (101) as multiset $\{1,1\}$, etc. The root of your dag will be the node $\{2,2,2\}$, its children will be $\{1,2,2\}$ and $\{2,2\}$, and the lowest node in the dag will be $\}$, the position with all piles empty. Circle all losing nodes.
b) Draw the top two levels (the root and all children) of the tree of all continuations (TOAC) of the game for nim(2) 22 . Also, for each multiset that appears as a node in the TOAC (so $\},\{1\},\{1,1\},\{2\},\{1,1,1\},\{1,2\},\{1,1,2\},\{2,2\},\{1,2,2\},\{2,2,2\}$), give the number of nodes in the subtree of that multiset in the TOAC.
14. a) Explain the name of nim/nim-memo-calls.py.
b) Show the output for $\operatorname{nim}\left(\begin{array}{lll}1 & 2 & 2\end{array}\right)$
c) Show the output for $\operatorname{nin}\left(\begin{array}{ll}2 & 2\end{array}\right)$
d) Uncomment line psn = tuple (sorted(nim_psn, reverse=True)) and comment out line psn $=$ tuple(sorted(nim_psn)). Show the output for nim(1 22 2).
15. a) In go/tromp.c and go/tromp.py, how would you change the move ordering so that the pass move is considered last instead of first?
b) With this change, is 2×2 go solved faster or slower? Why?
c) In go/tromp.c, why does Tromp write code that depends on bit manipulation, instead of writing code that is easier to understand?
d) What changes would you have to make to go/tromp. py so that it solves 3 x 3 go instead of 2 x 2 go?
16. What is the minimax value of 1×2 go?
17. For 3×3 Go, prove that if a player gets a middle- 3 shape (center line 3 -in-a-row) then they can win by 9 .
18. Solve the pinwheel problem for 3×3 go discussed in the following pdf. Assume positional superko rules. Give who wins and the principal variation.
https://webdocs.cs.ualberta.ca/~hayward/355/ssgo.pdf
19. In the pdf for the preceding question, for each of the three 1×5 linear go principal variations shown, prove that the minimax score for that variation is correct.

hints

1. (from tt24.py)
corner: center center: any corner
a2: a1, b2, c2, a3
2. a) in ttt , game can end before board is full
b) $1+9+9 * 8+9 * 8 * 7+\ldots+9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1=986410$
3. a) 549946 b) 16168 c) 58524 d) 8307
4. a) yes b) draw c) number of nodes in tree of all continuations, with wins never detected (so continues until board is full and returns loss). 986410, confirms our answer from the previous question d) 19108 e) 101648 f) 10344
5. a) 94978 b) 9973 c) 2740
6. a) 67182 b) 8866 c) 2458
7. see $t t t / d e v / t t 24 b i a s . p y$
8. a) less b) 1

9.	29	1	answer 11101
14	0		
7	1	check	$16+8+4+0+1=29:)$
3	1		or use method below
1	1		

10.

11. check your answer with nimbig.py
12. There is a winning move from a pile if the binary representation of the pile size has a 1 in the same bit position as the left-most 1 in the binary representation of the xorsum of all the piles. For there to be exactly two winning moves, there would have to be exactly two piles with a 1 in this bit position, but that would make the xorsum of the piles 0 for that bit position, which contradicts the fact that the xorsum there is 1 . Therefore, it's not possible to have exactly 2 winning moves.
13. a) see also https://webdocs.cs. ualberta.ca/~hayward/355/jem/ nim.html\#sol, where the dag is drawn sideways

b) $\} 1,\{1\} 2,\{1,1\} 3,\{2\} 4,\{1,1,1\} 4,\{1,2\} 10$,
$\{1,1,2\} 18,\{2,2\} 15,\{1,2,2\} 44,\{2,2,2\} 60$
14. a) nim game, recursive algorithm with memoization, show the calls
b) nim game pile sizes (eg. 357) 122
(1, 2, 2)
$(0,2,2)$
$(0,0,2)$
($0,0,0$) ($0,0,0$) lose
$(0,0,2)$ win
$(0,1,2)$

$$
(0,0,2)
$$

$$
(0,0,1)
$$

$$
(0,0,0)
$$

$$
(0,0,1) \text { win }
$$

$$
(0,1,1)
$$

$$
(0,0,1)
$$

$$
(0,1,1) \text { lose }
$$

$(0,1,2)$ win
$(0,2,2)$ lose
(1, 2, 2) win
winning move to $(0,2,2) \quad 10$ calls
c) pile sizes are sorted at each step, so same as a)
d) nim game pile sizes (eg. 357) 122

$$
(1,2,2)
$$

$$
(0,1,2)
$$

$$
(0,0,1)
$$

$$
(0,0,0)
$$

$$
(0,0,0) \text { lose }
$$

($0,0,1$) win
$(0,1,1)$
($0,0,1$)
$(0,1,1)$ lose
(0, 1, 2) win
$(1,1,2)$
($0,1,1$)
$(1,1,2)$ win
$(1,2,2)$ lose
losing, 8 calls
15. originally, each computer had its own instruction set. the introduction of assembly language programming (applicable to multiple machines) was a big step forward. the next big step forward was to the more human-readable language FORTRAN (at the time programmers didn't believe that such a language's compiled code would run within a factor of 2 of handwritten machine code: they were wrong). progressively more human-readable languages came along (yay python :), but, especially for small programs, some programmers enjoy writing code in a language close to machine level such as C. John Tromp participated in competitions for writing deliberately unreadable (obfuscated) code. he is obviously an expert programmer: maybe he thinks that his 2 x 2 C code is human-readable :)
16. see https://webdocs.cs.ualberta.ca/~hayward/355/ssgo.pdf
17. see https://webdocs.cs.ualberta.ca/~hayward/355/ssgo.pdf
18. left for you
19. left for you

