
cmput 355 2024 homework 3, with hints

In this course, unless we say otherwise,

when discussing minimax values of game tree nodes, we assume that

1st-player is MAX, 2nd-player is MIN, terminal nodes scores are for MAX.

1. One measure of the effectiveness of a particular 2-player-game strategy is its average case

performance. Instead, in the lectures, we discussed minimax, which gives us a player’s worst

(minimum) score over all possible opponent strategies. Why did we learn minimax, instead

of learning how to evaluate average case performance?

2. Give the minimax value for each non-terminal node.

9 2 6 1 5 8 3

7 j k 4 n p

q r w

t

3. For this game tree, list nodes in the order that dfs learns minimax values.

a b c d e f g

h j k m n p

q r w

t

A

B C

D E

F G

H J

4. Complete the following table. For each node when it is first reached in alphabeta search,

show the path to the root and each already-searched move option on this path.

node path-to-root already-searched move-options

on path-to-root

A (A) --

B (B, A) --

D (D, B, A) --

E (E, B, A) B-D

F (F, E, B, A) B-D

H (H, F, E, B, A) B-D

J (J, F, E, B, A) B-D, F-H

G __________________ ____________

C __________________ ____________

11 0 3 5 15 2 7 10 9 14 4 12 13 8 6 1

a 0 b 3 c 2 d 7 e 9 f 4 g 8 h 1

j 3 k 7 m 9 n 8

p 3 q 8

r 8

5. Below, redraw the above minimax tree so that each node’s best move is its left child. E.g. at

r, MAX’s best move is to q (MAX minimax value 8), so the left child of r is q (as shown).

Now you label the rest of the nodes.

q 8

r 8

6. Trace the alphabeta example here:

https://webdocs.cs.ualberta.ca/~hayward/355/p.pdf

For each change to a node’s minimax, alpha or beta value, explain why that change occurred

(each page of the pdf shows one change).

7. a) For each game tree, how many nodes are cut off by alpha-beta search?

b) At each node, give what is known about the minimax value (e.g. 11, ≥ 3, ≤ 7, or ? if

nothing is known) after αβ-minimax runs.

1 2 3 4

4 3 2 1

8. Repeat the previous question for these game trees.

1 2 3 4 5 6 7 8

6 5 8 7 2 1 4 3

9. (a) Repeat the previous two questions if we change all leaf values to 1 and we use the test

alpha > beta ? to check for cutoffs.

(b) Repeat the previous two questions if we change all leaf values to 1 and we use the test

alpha >= beta ? to check for cutoffs.

10. In this alphabeta search, subtrees are cut off below A,B,C,D,E. Explain the reason for each

cut.

11 12 9 ? 15 16 ? ? 3 ? 1 ? ? ? ? ?

H11 J<=9 K15 L? M<=3 N<=1 P Q

D11 E>=15 F>=11 G?

B11 C<=3

A 11

11. At right, unscramble these lines from the start of the alphabeta function in alphabeta.py.

Write line numbers only: indent properly. We have written the first line number for you.

ab = alphabeta(d+1, T, V, c, alpha, beta) #1 (3) ___ ___ ___ ___ ___ ___

break #2 ___ ___ ___ ___ ___ ___ ___

def alphabeta(d, T, V, v, alpha, beta): #3 ___ ___ ___ ___ ___ ___ ___

for c in T[v]: #4 ___ ___ ___ ___ ___ ___ ___

if ab > val: alpha, val = ab, ab #5 ___ ___ ___ ___ ___ ___ ___

if alpha >= beta: #6 ___ ___ ___ ___ ___ ___ ___

if isMaxNode(v, d): #7 ___ ___ ___ ___ ___ ___ ___

if isTerminalNode(v,V): return V[v] #8 ___ ___ ___ ___ ___ ___ ___

return val #9 ___ ___ ___ ___ ___ ___ ___

val = NEGINF #10 ___ ___ ___ ___ ___ ___ ___

12. Fill in the 2 blanks (missing code from negamax.py).

def negamax(d, T, V, v): # leaf scores for player-to-move

if isTerminalNode(v,V): return V[v]

val = NEGINF

for c in T[v]: # for each child c of v

val = max(__________________ , _______________________)

return val

13. Show the output when alphabeta is called on the game trees in question 6.

def alphabeta(d, T, V, v, alpha, beta): # leaf scores for MAX (root player)

print(d*’ ’, v,’MAX’ if isMaxNode(v,d) else ’MIN’,’?’,alpha,beta)

if isTerminalNode(v,V):

val = V[v]; print(d*’ ’, v, ’leaf’, val); return val

if isMaxNode(v, d):

val = NEGINF

for c in T[v]:

ab = alphabeta(d+1, T, V, c, alpha, beta)

if ab > val: alpha, val = ab, ab

if alpha >= beta:

print((d+1)*’ ’,’prune rem. ch. of’, v); break

print(d*’ ’, v, val, alpha, beta)

return val

val = INF

for c in T[v]:

ab = alphabeta(d+1, T, V, c, alpha, beta)

if ab < val: beta, val = ab, ab

if alpha >= beta:

print((d+1)*’ ’,’prune rem. ch. of’, v); break

print(d*’ ’, v, val, alpha, beta)

return val

14. Show the output when negamax is called on the game trees in question 6.

def negamax(d, T, V, v): # leaf scores for player-to-move

print(d*’ ’, v)

if isTerminalNode(v,V):

val = V[v]; print(d*’ ’, v, ’leaf’, val); return val

val = NEGINF

for c in T[v]: # for each child c of v

val = max(val, -negamax(d+1, T, V, c))

print(d*’ ’, v, val)

return val

15. When I run alphabeta.py on t6.in, it return a minimax value of 8 (last line of output:

A 8 8 999). But when I run negamax.py on t6.in, it returns a minimax value of −1 (last

line of output: A -1).

(a) Why did negamax.py not print out the alpha and beta values?

(b) Why did the two programs return different minimax values for the above input? Is one

of them wrong? Explain.

16. The root of each tree is a MAX node. For each leaf, the minimax value for MAX is shown.

For each tree, give the minimax value for MAX for each node A,B,C. Answer like this: A 2,

B 8, C 4

A

B C

7 5 3 1 9

A

B C

9 7 5 3 1

A

B C

3 1 9 7 5

17. Repeat the previous question with this change: the root of the tree is a MIN node, each child

of the root is a MAX node, each grandchild of the root is a MIN node, each leaf is labelled

with the score for MAX.

18. Explain briefly how to use class program alphabeta.py to answer each of the previous two

questions. (One of these cases is trivial.) Explain clearly.

19. The root of each tree is a MAX node. For each tree, for each leaf, the minimax value for

MAX is shown. In alphabetic order, give the minimax value for MAX for each node A B C

. . . K. Answer like this: 3 5 7 8 9 0 1 3 3 6 6 .

A

B C D

E 1 F 2 G H

2 I 3 0 5 J K 6

7 8 9 1 2 3 4 5

A

B C D

E 8 F 7 G H

7 I 6 9 5 J K 3

2 1 0 8 7 6 5 4

A

B C D

E 4 F 5 G H

5 I 6 3 8 J K 9

0 1 2 4 5 6 7 8

20. Repeat the previous question with this change: the root of the tree is a MIN node, each child

of the root is a MAX node, each grandchild of the root is a MIN node, each leaf is labelled

with the score for MAX.

21. (a) For a two-player game, a principal variation is a sequence of moves from the start of the

game to a terminal position, where each move by each player is best possible. For question

19, give a principal variation. E.g. for question 16, the principal variation for the trees, from

left to right, are respectively

1.MAX to B, 2.MIN to 5; 1.MAX to B, 2.MIN to 7; 1.MAX to C, 2.MIN to 5.

(b) Repeat (a) for question 20.

22. (Recall: In alphabeta search, at each MAX node, alpha tracks the best (so, maximum) score

so far that MAX can get on the path from the current node to the root. Similarly, at each

MIN node beta tracks the best (so, minimum) score so far that MIN can get on the path

from the current node to the root.

Assume that x is a MIN node with current beta value β obtained by picking a child y of x.

Assume that minimax search now starts at child z of x, so a MAX node. If at z the alpha

value α grows so that α ≥ β then we can stop searching at z, since MIN can always prefer

child y (with value β) to child z (with value ≥ α ≥ β).

(fill in the blanks) Assume that x is a MAX node with current alpha value α obtained

by picking a child y of x. Assume that minimax search now starts at child z of x, so a

_______________ node. If at z the beta value β drops so that β ≤ α then we can stop

searching at z, since

23. In tic-tac-toe, assume that a player scores 1, −1, 0 respectively for a win, loss or draw. For

the three non-isomorphic first moves in tic-tac-toe, what is the first player’s minimax value

for each move? (Use any of the programs from class to answer this question.)

24. Recall that a proof tree is a subtree of the minimax tree that is sufficient to prove an upper

bound or lower bound on the minimax value. i) For x to play from the postion below left,

give a proof tree that shows that x can win. ii) For x to play from the postion below middle,

give a proof that shows that o can win. (Give all possible first moves for x, then for each

give a winning reply for o, then for each give all next moves for x, then for each a winning

reply for o, etc.) Check your answer using a program from /simple/ttt/ .

. . o

. . . x o x . o .

o x x . o . x o x

25. a) Modify the win condition for tic-tac-toe: 1st-player x wins with 3-in-a-row, otherwise

2nd player o wins. (It doesn’t matter whether 2nd player gets 3-in-a-row.) What is the

first-player minimax value for this game (win, lose)? For this game, give a proof tree for x

to play from the position above right.

b) Repeat a) for this win condition: 2nd-player x wins with 3-in-a-row, otherwise 1st-player

o wins.

hints

1. Minimax gives us a guarantee (we are guaranteed to score at least the minimax value, which

is always good to know. Also, minimax is easier to compute than average case performance.

We can find the minimax value of a strategy in time that proportional to the number of

nodes in the game dag. Average case analysis usually requires more computation time.

2. j 9 q 7 k 6 r 4 n 5 p 8 w 5 t 7

3. dfs postorder: h a b j q c d k m r e n f g p w t

4. G (G, E, B, A) E-F, B-D

C (C, A) A-B

(To check these answers, you can give each leaf a value and trace alphabeta search.)

5.

8 13 1 6 9 14 4 12 3 5 0 11 7 10 2 15

g 8 h 1 e 9 f 4 b 3 a 0 d 7 c 2

n 8 m 9 j 3 k 7

q 8 p 3

r 8

6. see the pdf

7. a) 0 (left tree) 1 (right) b) see below

1 2 3 4

1 3

3

4 3 2 ?

3 <=2

3

8. a) 2 (left tree) 4 (right) b) see below

1 2 3 ? 5 6 7 ?

2 >=3 6 >=7

2 6

6

6 5 8 ? 2 1 ? ?

6 >=8 2 ?

6 <=2

6

9. (a) 0 cutoffs (b) same number of cutoffs as with perfect move ordering

10. The first cut occurs at the MIN node that has children labelled 9, ?. Call this node v. In

the dfs alphabeta execution, after backing up from the left subtree (terminal node, MAX

score 9), v has α = 11 (from parent of v, MAX can move to the left subtree) and β = 9

(from v, MIN can move to the left subtree). Whenever a node has α greater than β, we

know neither player will ever move there, so execution backtracks from v to the parent of v,

and the right subtree of v is never explored (which is why the right child of v has label ?).

11. See the class github repo.

12. See the class github repo.

13. From the github code repo, run abterse.py with input t9.in and t8.in. One of your

outputs should look like this:

A MAX ? -999 999

B MIN ? -999 999

D MAX ? -999 999

D leaf 4

E MAX ? -999 4

E leaf 3

B 3 -999 3

C MIN ? 3 999

F MAX ? 3 999

F leaf 2

prune rem. ch. of C

C 2 3 2

A 3 3 999

14. Run negamax.py on t9.in and t8.in. One output looks like this:

A

B

D

D leaf 4

E

E leaf 3

B -3

C

F

F leaf 2

G

G leaf 1

C -1

A 3

15. (a) negamax.py is a version of minimax, not a version of alpha-beta minimax: it does not

use alpha/beta values (so it does not cut off any subtrees).

(b) alphabeta.py assumes that all leaf node scores are for MAX. negamax.py assumes

that all leaf node scores are for the player-to-move, which in t6.in will always be MIN.

In t6nega.in, the leaf scores have been converted for player-to-move. When you run

negamax.py on t6nega.in, you get the same minimax value as when you run alphabeta.py

on t6.in.

16. Run a minimax or alphabeta or negamax program from the class repo to check your answers

(you will need to first create the input files).

17. see the next answer

18. you can change the input file in one of two ways: a) add a new root, make its only child A

b) keep the tree but negate the values of all leaves; run the program; negate the answer

19. Run a minimax or alphabeta or negamax program from the class repo.

20. See the answer to 18

21.

22.

23. hint given in question

24. hint given in question

25. modify the winning condition part of a ttt solver from class to check your answer

