
cmput 355 2024 homework 2

1. What is the maze traversal problem? Explain how solving a sliding tile puzzle (STP) is

similar to maze traversal.

2. At right, unscramble this code (see hexgo/stone_board.py) so that it prints nodes in

(a) dfs preorder (b) dfs postorder. Write line numbers only: indent properly. We have

written the first line number for you.

print(p) #(1) (6) ___ ___ ___ ___ ___

self.dfs(nbr, seen) #(2) ___ ___ ___ ___ ___ ___

seen[p] = True #(3) ___ ___ ___ ___ ___ ___

if not seen[p]: #(4) ___ ___ ___ ___ ___ ___

for nbr in self.nbrs[p]: #(5) ___ ___ ___ ___ ___ ___

def dfs(self, p, seen): #(6) ___ ___ ___ ___ ___ ___

3. for sort_nbrs in (True, False):

brd.bfs_demo(2, sort_nbrs)

brd.dfs_demo(2, sort_nbrs, True)

brd.dfs_demo(2, sort_nbrs, False)

In the above code (from hexgo/hex.py), explain each of the following:

a) brd? b) brd.dfs_demo? c) 2? d) sort_nbrs? e) line 3 versus line 4?

f) Show code output for the 2×3 hex board with these neighbor sets:

-4 {0, 1, 2} 0 {1, 3, -4, -1} 3 {0, 1, 4, -1, -2}

-3 {2, 5} 1 {0, 2, 3, 4, -4} 4 {1, 2, 3, 5, -2}

-2 {3, 4, 5} 2 {1, 4, 5, -4, -3} 5 {2, 4, -3, -2}

-1 {0, 3}

g) Show code output for the 3×4 go board with these neighbor sets:

0 {1, 4} 4 {0, 8, 5} 8 {9, 4}

1 {0, 2, 5} 5 {1, 4, 6, 9} 9 {8, 10, 5}

2 {1, 3, 6} 6 {2, 10, 5, 7} 10 {9, 11, 6}

3 {2, 7} 7 {11, 3, 6} 11 {10, 7}

4. For each STP, give (a) the number of inversions and (b) whether the STP is solvable. Justify

briefly.

3 5 7 3 5 7 _ 2 5 3 _ 2 5 3

2 4 1 2 4 1 7 1 4 6 7 1 6 4

8 6 _ 6 8 _

5. What is the maximum number of inversions in a STP with these dimensions:

(a) 3×3 (b) 3×4 (c) 4×4 (d) r×c Explain briefly.

6. For this STP, give A) the number of inversions and B) the taxicab value. Also, from this

position (the root), draw the next two levels of the search space graph. Also, give C) the

number of positions reachable from this position, i.e. the number of nodes in this component

of the search space graph.

1 3 5 7 A ____ B ____ C ____

2 4 6 -

7. Solve this STP. After each move, show the position (you might not need all space given).

The first move has been done for you.

start 5 4 3 _ 4 3 _

_ 2 1 5 2 1 _

_ 1 2 3 finished

_ 4 5 _

When solving the above STP with breadth-first search, the number of positions encountered

is around (circle ONE ONLY)

10 50 100 150 200 250 300 350 700 1400 3000 6000 12000

For STPs, what algorithm(s) always find(s) a shortest solution? (circle ALL that apply)

a) breadth-first search b) A*-search with taxicab distance heuristic

c) depth-first search d) A*-search with number-misplaced-tiles heuristic

8. Prove: the solution position of a STP has 0 inversions.

9. Prove: if you take a STP position and swap the locations of tiles 1 and 2, the number of

inversions changes by exactly 1.

10. Here are two 3×7 STP positions. Some tile numbers are hidden.

a) At left, what is the change in the number of inversions after move 18 up? Explain.

b) At right, what is the change in the number of inversions after move 11 down? Explain.

? ? ? ? __ 4 15 ? ? ? ? ? ? ?

7 22 11 24 18 ? ? ? ? 11 24 18 5 26

? ? ? ? ? ? ? 15 9 __ ? ? ? ?

11. Prove: for a STP with an odd number of columns, the change in the number of inversions

after each move is an even number.

12. Prove: every solvable STP with an odd number of columns has an even number of inversions.

13. Run stile/15puzzle.py -p 15 14 13 12 10 9 8 11 7 6 4 2 5 1 3 three times, once

for each schedule A,B,C. (schedule A places tiles {1,2,3,4} first, schedule B places tile {1}

first, etc). For each run, in the solution found, give total moves made and nodes searched.

Hint: each answer is in {82, 90, 120, 6865, 145722, 1765263 }.

moves searched

A)[[1,2,3,4], [5,9,13], [6,7,8,10,11,12,14,15]] _____ _____

B)[[1], [2], [3,4], [5], [6], [7,8], [9,13], [10,14], [11,12,15] _____ _____

C)[[1,2], [3,4], [5,6,7,8], [9,10,11,12,13,14,15]] _____ _____

14. a) Prove that this STP is unsolvable. 1 2 3

4 5 6

8 7 _

b) In the class github repo, execute stile/stile_search_v2.py < in/33no . What are the

two positions found at level 31 (the deepest level) of the search?

c) Give a permutation of 1 to 8 that maps the puzzle in a) into the STP solution position.

number 1 2 3 4 5 6 7 8

permutation ()

d) Apply permuation c) to each position from b) and show each new position.

e) Execute stile_search_v2.py < in/33longa. How many moves does it take to solve

in/33longa? Can there be a shorter solution?

f) Are in/33longa and in/33longb the only two solvable 3×3 STPs with longest solution?

Explain carefully.

15. (a) Run stile/stile_search_v2.py < in/300. Is this STP solvable or unsolvable?

(b) Create a new file in/300no by exchanging the positions of tiles 1 and 2, and repeat (a).

(c) Explain briefly exactly one of the STPs in (a,b) is solvable.

(d) Using the output data from these two executions of stile/stile_search_v2.py < in/300,

prove that every 3×3 STP with an even number of inversions is solvable.

16. Here are two roadmaps labelled with distances. Below are heuristic estimates of distance Z,

and A* pseudocode from class. Trace the pseudocode on the graph at left, with start A and

finish Z. Each time current is assigned a node, give the node and its priority. For the graph

at right, this is the answer: A 0, C 32, Z 33

A

B

C

D

E
F

G

Z

10

10

15

21

12
15

8
10

A

B

C

Z

20

20

10

23

heuristic estimates heuristic estimates

BZ CZ DZ EZ FZ GZ ZZ BZ CZ ZZ

26 24 22 18 7 10 0 20 22 0

answer: __________________________________ answer: A 0, C 32, Z 33

fringe = PQ()

fringe.add(start, 0)

parent, cost, done = {}, {}, []

parent[start], cost[start] = None, 0

while not fringe.empty():

current = fringe.remove() # min priority

done.add(current)

if current == target: break

for next in nbrs(current):

if next not in done:

new_cost = cost[current] + wt(current, next)

if next not in cost or new_cost < cost[next]:

cost[next] = new_cost

priority = new_cost + heuristic(next, target)

fringe.add(next, priority)

parent[next] = current

