cmput 3552024 homework 1

In this course, unless we say otherwise, in all go games, we follow the logical rules with no self-capture, and we assume that the komi is 0 .

1. What is the main difference between the logical rules of go and the Chinese rules of go?
2. (a) For this go position, give all black blocks and all white blocks. Write each block as a set of points, e.g. \{a1\}. (b) For each block, give all 3 liberties (again, as a set of points). (c) If this is the final position in the 2 game, what is the final score? Answer like this: Black has 32, White has 1 17. (d) Repeat (c) if the komi is 3.5 .

3. (a) For this go position, on the pointer diagram, draw the parent pointers. (b) Repeat the question if moves 3 and 5 are exchanged. (c) Why does the order of moves matter?

4. Repeat the previous question for this hex position. Don't forget to change rows $1 \leftrightarrow 3$.

5. (a) For github program hexgo/hex.py, after move 4, on the pointer diagram at each point that is a root of its block, give the set of liberties of that block. (b) Repeat (a) for 5.
(8) (9)
10
(11)

(4) (5)
(6)
(7)
(0) (1)
(2)
(3)
6. Repeat the previous question for this hex position.

7. (a) Explain why there are 3 possible 1 x 1 go positions. (b) Explain why only 1 of the positions in (a) is legal. (c) Explain why the only legal 1 x 1 go game is 1.B[pass] 2.W[pass]. (d) Explain why there are 81 possible 2 x 2 go positions. (e) Find the number of legal 2 x 2 go positions. Justify briefly.
8. In Hex, there is no pass move and the game ends as soon as a player has joined their two sides. Find the number of legal 2 x 2 hex games.
9. (a) In each of the following go games, give the first illegal move, and explain why it is illegal (occupied point, liberty violation, superko violation). Answer all moves legal if all moves are legal. (b) Repeat (a) if we allow self-capture.

$$
\begin{aligned}
& \ldots 8 . \mathrm{W}[\mathrm{~b} 2] 9 . \mathrm{B}[\mathrm{c} 3] 10 . \mathrm{W}[\mathrm{~d} 3] \\
& \ldots 8 . \mathrm{W}[\mathrm{~b} 2] 9 . \mathrm{B}[\mathrm{c} 3] 10 . \mathrm{W}[\mathrm{~d} 3] \\
& \ldots \\
& \text {. 8.W[b2] 9.B[a3] 10.W[a1] } \\
& \ldots \\
& \text {. 8.W[a1] 9.B[a3] 10.W[a1] } \\
& \ldots \\
& \text { 8.W[b2] 9.B[d3] 10.W[a1] } \\
& \ldots \\
& 8 . W[d 1] ~ 9 . B[a 1] ~ 10 . W[d 3] ~ 11 . B[b 2] ~
\end{aligned}
$$

10. Explain the significance of each of these moves in the DeepMind challenge match between Lee Sedol and AlphaGo. (a) game 1: move 7 (b) game 3: move 37 (c) game 4: move 78
11. In file stone_board.py in directory hexgo in class github repo https://github.com/ryanbhayward/games-puzzles-algorithms:
(a) explain carefully the purpose of this line and how it is used:
self.nbr_offset $=((-1,0),(0,1),(1,0),(0,-1))$
(b) repeat (a) for this line
self.nbr_offset $=((-1,0),(-1,1),(0,1),(1,0),(1,-1),(0,-1))$
(c) explain carefully whether this line is necessary or can be omitted
if $\mathrm{r}+\mathrm{y}$ in $\mathrm{r}_{\text {_r }} \mathrm{range}$ and $\mathrm{c}+\mathrm{x}$ in c_range:
12. From file go_helper.py in directory go in the class github repo:
(a) unscramble and indent the python code from the while loop inside the function that computes the score for each player:
```
b_nbr |= (self.brd[x] == BLACK)
empty_points.append(x)
empty_seen.add(x)
if self.brd[x] == EMPTY and x not in empty_seen:
for j in self.nbr_offsets:
w_nbr |= (self.brd[x] == WHITE)
while (len(empty_points) > 0):
q = empty_points.pop()
x = j + q
territory += 1
```

(b) for each line, give a brief comment explaining what is happening
13. In the class github repo, in directory hexgo, in file stone_board.py: (a) explain the purpose of each line of merge_blocks()

```
def merge_blocks(self, p, q):
    proot, qroot = UF.union(self.parents, p, q)
    self.blocks[proot].update(self.blocks[qroot])
    self.liberties[proot].update(self.liberties[qroot])
    self.liberties[proot] -= self.blocks[proot]
```

(b) explain the purpose of each line of remove_liberties().
14. In the class github repo, in directory hexgo, execute hex.py . (a) List the hex moves that have been made in the game by m33demo (the first move is $1 . \mathrm{B}[\mathrm{b} 2]$). (b) Which of the four lines of output tells you that black has won the game? Explain carefully.

